一种基于物联网的人工智能控制系统及方法与流程

未命名 08-27 阅读:87 评论:0


1.本发明涉及物联网技术领域,具体为一种基于物联网的人工智能控制系统及方法。


背景技术:

2.随着互联网技术的快速发展,互联网技术在人们生活中的应用越来越广泛,在燃气监管方面,人们可以采用传感器实现对燃气表内通过的燃气量实现监控,同时,燃气表内设置阀门,人们可以通过控制燃气表内阀门的开关实现对燃气的安全管理。
3.实际生活中,燃气表内的监控传感器与控制阀门未存在直接关联关系,在实际使用中,人们控制阀门时需要手动操作,进而当燃气表安装在高处或偏僻位置时,控制阀门开关极不方便;为了实现对燃气表的有效管控及对燃气的安全管理,社会上出现了智能语音控制型燃气表(基于物联网的人工智能控制系统,通过语音控制指令控制燃气表内的阀门开关),在一定程度上为用户带来了便利。
4.现有的基于物联网的人工智能控制系统,只是简单的识别用户发出的语音指令及语音指令的具体内容实现对燃气表内阀门开关的控制,但是,未结合用户历史数据分析用户对燃气的使用习惯情况(往往会出现用户正在使用燃气,但是之前发出的语音指令达到指令时间,进而控制阀门关闭,用户需要二次发出语音指令的情况,该情况为用户使用燃气带来不便),同时,也未考虑到监测时用户的实际状态,无法实现对用户发出的语音指令内容的自适应调节,进而现有技术存在较大的缺陷。


技术实现要素:

5.本发明的目的在于提供一种基于物联网的人工智能控制系统及方法,以解决上述背景技术中提出的问题。
6.为了解决上述技术问题,本发明提供如下技术方案:一种基于物联网的人工智能控制方法,所述方法包括以下步骤:
7.s1、获取历史数据中用户在不同时间的燃气使用数据,提取用户的燃气使用特征,并获取历史数据中用户对燃气表的供气语音指令对集合;
8.s2、获取用户的燃气使用特征与供气语音指令对集合中元素之间的关联性,将用户的燃气使用特征与供气语音指令对集合中存在关联关系的元素汇总到一个空白数组中,得到用户的各个燃气使用关联数组,并获取用户的每个燃气使用关联数组对应的指令偏差特征;
9.s3、获取历史数据中不同燃气使用关联数组对应时间区间内的环境状态值,并分析用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系;
10.s4、获取当前时间用户燃气表的运行状态,结合用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系,预测当前时间用户燃气表的指令偏差特征,根据所得预测结果对当前时间用户燃气表接收的最近一次供气语音指令持续时长进行
自适应调节。
11.进一步的,所述燃气使用数据为燃气表在不同时间对应的数据,将历史数据中时间t时的燃气使用数据记为at,
12.所述提取用户的燃气使用特征时,每个使用特征对应一个燃气使用时间区间及相应时间区间对应的燃气变化量,同一使用特征对应的燃气使用时间区间中不同时间对应的燃气使用数据均不相同,
13.将提取的用户的第i个燃气使用特征记为bi,将bi对应的燃气使用时间区间记为bi1,将bi对应的燃气变化量记为bi2,bi2的值等于bi1中最大时间对应的燃气使用数据与最小时间对应的燃气使用数据之间的差值;
14.所述历史数据中用户对燃气表的供气语音执行对集合中每个元素对应一条供气语音指令对,每个供气语音指令对包括用户发出供气语音指令的时间、指令内容中供气持续时长及指令内容对应的实际供气持续时长。
15.进一步的,所述s2中得到用户的各个燃气使用关联数组的方法包括以下步骤:
16.s21、获取历史数据中提取的用户的各个燃气使用特征及用户对燃气表的供气语音执行对集合;
17.s22、获取用户对燃气表的供气语音执行对集合中每个供气语音执行对对应的执行时间区间,
18.所述供气语音执行对对应的执行时间区间中的最小值等于相应供气语音执行对中用户发出供气语音指令的时间,所述供气语音执行对对应的执行时间区间中的最大值等于相应供气语音执行对中用户发出供气语音指令的时间与指令内容对应的实际供气持续时长之和;
19.s23、判断用户的燃气使用特征与供气语音指令对集合中元素之间关联性,
20.当供气语音指令对集合中元素对应的执行时间区间与用户的燃气使用特征中燃气使用时间区间的交集为空,则判定供气语音指令对集合中该元素与用户的该燃气使用特征之间不存在关联性,
21.当供气语音指令对集合中元素对应的执行时间区间与用户的燃气使用特征中燃气使用时间区间的交集不为空,则判定供气语音指令对集合中该元素与用户的该燃气使用特征之间存在关联性;
22.本发明判断用户的燃气使用特征与供气语音指令对集合中元素之间关联性,是为了实现对燃气使用特征进行筛选,获取同一语音指令对应的供气持续时间内用户分别对应的各个燃气使用特征(即在实际生活中,用户在一段时间内,开启燃气灶使用燃气的次数,每次使用燃气的情况对应一个燃气使用特征),为后续步骤中得到用户的各个燃气使用关联数组提供了数据参照;
23.s24、得到用户的各个燃气使用关联数组,每个燃气使用关联数组包括一个或多个供气语音指令对及与供气语音指令对存在关联性的各个燃气使用特征,
24.同一燃气使用关联数组中的每个供气语音指令均与其余供气语音指令对中的一个或多个存在关联关系,
25.当一个供气语音指令对对应执行时间区间中存在一个时间点与另一个供气语音指令对对应执行时间区间的一个时间点差值的绝对值小于数据库中的第二预设值,则判定
这两个供气语音指令对之间存在关联关系,
26.当一个供气语音指令对对应执行时间区间中任意一个时间点与另一个供气语音指令对对应执行时间区间的任意一个时间点差值的绝对值均大于等于数据库中的第二预设值,则判定这两个供气语音指令对之间不存在关联关系;
27.获取用户的每个燃气使用关联数组对应的指令偏差特征时,将用户的第j个燃气使用关联数组对应的指令偏差特征记为{c1j,c2j},所述c1j表示用户的第j个燃气使用关联数组对应的供气时长偏差率,所述c2j表示用户的第j个燃气使用关联数组对应的供气时间利用率占比,
28.当用户的第j个燃气使用关联数组中只存在一个供气语音指令对时,则判定{c1j,c2j}等于{0,0},
29.当用户的第j个燃气使用关联数组中存在n1个供气语音指令对且n1≥2时,则得到用户的第j个燃气使用关联数组对应的指令偏差特征{c1j,c2j},
30.c1j=1/(n1-1)
×

n=1n=n1-1
[(t1
dnj-t
dnj
+tq1
dnj
)/t
dnj
],
[0031]
其中,tq1
dnj
表示用户的第j个燃气使用关联数组中与第n+1个供气语音指令对存在关联性的各个燃气使用特征中,对应时间点最小的燃气使用特征相应燃气使用时间区间的时长,t
dnj
表示用户的第j个燃气使用关联数组中第n个供气语音指令对内指令内容中供气持续时长,t1
dnj
表示用户的第j个燃气使用关联数组中第n个供气语音指令对内指令内容对应的实际供气持续时长,
[0032]
c2j=∑
n=1n=n1-1
tql
dnj
/(tq1
d(n1-1)j
+∑
n=1n=n1-1
t1
dnj
),
[0033]
其中,tql
dnj
表示用户的第j个燃气使用关联数组中与第n个供气语音指令对存在关联性的各个燃气使用特征分别对应的燃气使用时间区间的并集相应的时长。
[0034]
本发明得到用户的各个燃气使用关联数组时,考虑到每个燃气使用关联数组包括一个或多个供气语音指令对,是因为用户在使用燃气的过程中,若语音指令内容对应的实际供气时长达到上限值时,燃气表会停止供气,而用户需要再次发出供气语音指令,进而可能会出现用户做一次饭会出现发出多次供气语音指令的情况,进而可以判定这多个供气语音指令存在关联关系,将它们划分为一个燃气使用关联数组,能够使得后续步骤中获取的指令偏差特征更加准确。
[0035]
进一步的,所述s3中获取历史数据中不同燃气使用关联数组对应时间区间内的环境状态值时,所述燃气使用关联数组对应时间区间为燃气使用关联数组内各个元素分别对应的时间区间的并集,所述燃气使用关联数组对应时间区间内的环境状态值等于燃气使用关联数组对应时间区间内不同时间点分别对应气温的平均值,将用户的第j个燃气使用关联数组对应的环境状态值记为wj;
[0036]
所述s3中分析用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系的方法包括以下步骤:
[0037]
s31、获取用户的燃气使用关联数组对应的指令偏差特征及相应燃气使用关联数组对应的环境状态值;
[0038]
s32、构建每个燃气使用关联数组对应的第一特征状态数据对及第二特征状态数据对,将用户的第j个燃气使用关联数组对应的第一特征状态数据对记为(wj,c1j),将用户的第j个燃气使用关联数组对应的第二特征状态数据对记为(wj,c2j);
[0039]
s33、以o为原点且以环境状态值为x轴且以指令偏差特征中的供气时长偏差率为y轴构建第一平面直角坐标系,并将s32获取的第一特征状态数据对分别对应的标记点在第一平面直角坐标系中相应的坐标点位置进行标记,根据标记点对应的x轴坐标值,将第一平面直角坐标系中相邻的标记点进行连线,得到第一折线图,将第一折线图对应的函数记为g1(x),
[0040]
第一特征状态数据对对应的标记点的第一个数据等于相应第一特征状态数据对中的第一个数据,获取第一个数据相等的不同第一特征状态数据对中第二个数据的平均值,作为相应标记点的第二个数据;
[0041]
s34、以o1为原点且以环境状态值为x1轴且以指令偏差特征中的供气时间利用率占比为y1轴构建第二平面直角坐标系,并将s32获取的第二特征状态数据对分别对应的标记点在第二平面直角坐标系中相应的坐标点位置进行标记,根据标记点对应的x1轴坐标值,将第二平面直角坐标系中相邻的标记点进行连线,得到第二折线图,将第二折线图对应的函数记为g2(x1);
[0042]
s35、得到用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系,所得关系包括函数g1(x)与函数g2(x1)。
[0043]
进一步的,所述s4中当前时间用户燃气表的运行状态包括最近一次供气语音指令对{r1,r2,r3}、包含最近一次供气语音指令对的燃气使用关联数组e及当前时间对应的气温wr,其中,r1表示最近一次供气语音指令中发出供气语音指令的时间,r2表示最近一次供气语音指令对内指令内容中供气持续时长,r3表示最近一次供气语音指令对中指令内容对应的实际供气持续时长,最近一次供气语音指令对中指令内容对应的实际供气持续时长等于从发出供气语音指令的时间至当前时间的时长;
[0044]
本发明获取当前时间用户燃气表的运行状态,是为了结合上述分析结果,预测当前时间用户燃气表的指令偏差特征,为后续对当前时间用户燃气表接收的最近一次供气语音指令持续时长进行自适应调节提供数据参照。
[0045]
进一步的,所述s4中预测当前时间用户燃气表的指令偏差特征时,获取wr,获取用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系中的g1(x)及g2(x1);将wr分别代入g1(x)中的x及g2(x1)中的x1,得到当前时间用户燃气表的指令偏差特征的预测值,记为{c1h,c2h}。
[0046]
进一步的,所述s4中根据所得预测结果对当前时间用户燃气表接收的最近一次供气语音指令持续时长进行自适应调节时,获取当前时间用户燃气表的指令偏差特征的预测值,记为{c1h,c2h},
[0047]
根据公式c1h=1/(n1-1)
×
{(r4-r2)/r2+∑
n2=1n2=n3-1
[(t1
dn2-t
dn2
+tq1
dn2
)/t
dn2
]},得到r4,
[0048]
其中,r4表示第一校准时长,n3表示e中含有的供气语音指令对个数,tq1
dnj
表示e中与第n2+1个供气语音指令对存在关联性的各个燃气使用特征中,对应时间点最小的燃气使用特征相应燃气使用时间区间的时长,t
dn2
表示e中第n2个供气语音指令对内指令内容中供气持续时长,t1
dn2
表示e中第n2个供气语音指令对内指令内容对应的实际供气持续时长,
[0049]
根据公式c2h=(r6+∑
n2=1n2=n3-1
tql
dn2
)/(r5+r3+∑
n=1n2=n3-1
t1
dn2
),得到r5对应的值,
[0050]
其中,r6表示历史数据中与最近一次供气语音指令对存在关联性的各个燃气使用
特征分别对应的燃气使用时间区间的并集相应的时长,tql
dn2
表示e中与第n2个供气语音指令对存在关联性的各个燃气使用特征分别对应的燃气使用时间区间的并集相应的时长,r5表示第二校准时长,
[0051]
当r4≤r2,则判定当前时间用户燃气表接收的最近一次供气语音指令对应的持续时长上限值为r2,
[0052]
当r4>r2时,进一步判断当前时间燃气是否为使用状态,
[0053]
如果当前时间用户正在使用燃气,则当前时间用户燃气表接收的最近一次供气语音指令对应的持续时长上限值为max{r5+r3,r4},所述max{r5+r3,r4}表示r5+r3与r4中的最大值,如果当前时间用户未使用燃气,则当前时间用户燃气表接收的最近一次供气语音指令对应的持续时长上限值为max{r2,r3},
[0054]
在当前时间用户燃气表接收的最近一次供气语音指令对应的持续时长上限值为max{r5+r3,r4}的情况下,若[r2,max{r5+r3,r4}]中用户出现停止使用燃气的情况,则燃气表立即停止供气,且当前时间用户燃气表接收的最近一次供气语音指令结束。
[0055]
一种基于物联网的人工智能控制系统,所述系统包括以下模块:
[0056]
供气指令数据获取模块,所述供气指令数据获取模块获取历史数据中用户在不同时间的燃气使用数据,提取用户的燃气使用特征,并获取历史数据中用户对燃气表的供气语音指令对集合;
[0057]
指令偏差特征分析模块,所述指令偏差特征分析模块获取用户的燃气使用特征与供气语音指令对集合中元素之间的关联性,将用户的燃气使用特征与供气语音指令对集合中存在关联关系的元素汇总到一个空白数组中,得到用户的各个燃气使用关联数组,并获取用户的每个燃气使用关联数组对应的指令偏差特征;
[0058]
数据关联关系分析模块,所述数据关联关系分析模块获取历史数据中不同燃气使用关联数组对应时间区间内的环境状态值,并分析用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系;
[0059]
数据预测调节模块,所述数据预测调节模块获取当前时间用户燃气表的运行状态,结合用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系,预测当前时间用户燃气表的指令偏差特征,根据所得预测结果对当前时间用户燃气表接收的最近一次供气语音指令持续时长进行自适应调节。
[0060]
与现有技术相比,本发明所达到的有益效果是:本发明在识别用户发出的语音指令及根据语音指令的具体内容实现对燃气表内阀门开关的控制时,结合用户历史数据分析用户对燃气的使用习惯情况,并考虑到监测时用户的实际状态,实现对用户发出的语音指令内容的自适应调节,降低了用户二次发出语音指令的概率,实现了对燃气表供气时长的有效管理。
附图说明
[0061]
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
[0062]
图1是本发明一种基于物联网的人工智能控制方法的流程示意图;
[0063]
图2是本发明一种基于物联网的人工智能控制系统的结构示意图。
具体实施方式
[0064]
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0065]
请参阅图1,本发明提供技术方案:一种基于物联网的人工智能控制方法,所述方法包括以下步骤:
[0066]
s1、获取历史数据中用户在不同时间的燃气使用数据,提取用户的燃气使用特征,并获取历史数据中用户对燃气表的供气语音指令对集合;
[0067]
所述燃气使用数据为燃气表在不同时间对应的数据,将历史数据中时间t时的燃气使用数据记为at,
[0068]
所述提取用户的燃气使用特征时,每个使用特征对应一个燃气使用时间区间及相应时间区间对应的燃气变化量,同一使用特征对应的燃气使用时间区间中不同时间对应的燃气使用数据均不相同,
[0069]
将提取的用户的第i个燃气使用特征记为bi,将bi对应的燃气使用时间区间记为bi1,将bi对应的燃气变化量记为bi2,bi2的值等于bi1中最大时间对应的燃气使用数据与最小时间对应的燃气使用数据之间的差值;
[0070]
所述历史数据中用户对燃气表的供气语音执行对集合中每个元素对应一条供气语音指令对,每个供气语音指令对包括用户发出供气语音指令的时间、指令内容中供气持续时长及指令内容对应的实际供气持续时长。
[0071]
s2、获取用户的燃气使用特征与供气语音指令对集合中元素之间的关联性,将用户的燃气使用特征与供气语音指令对集合中存在关联关系的元素汇总到一个空白数组中,得到用户的各个燃气使用关联数组,并获取用户的每个燃气使用关联数组对应的指令偏差特征;
[0072]
所述s2中得到用户的各个燃气使用关联数组的方法包括以下步骤:
[0073]
s21、获取历史数据中提取的用户的各个燃气使用特征及用户对燃气表的供气语音执行对集合;
[0074]
s22、获取用户对燃气表的供气语音执行对集合中每个供气语音执行对对应的执行时间区间,
[0075]
所述供气语音执行对对应的执行时间区间中的最小值等于相应供气语音执行对中用户发出供气语音指令的时间,所述供气语音执行对对应的执行时间区间中的最大值等于相应供气语音执行对中用户发出供气语音指令的时间与指令内容对应的实际供气持续时长之和;
[0076]
s23、判断用户的燃气使用特征与供气语音指令对集合中元素之间关联性,
[0077]
当供气语音指令对集合中元素对应的执行时间区间与用户的燃气使用特征中燃气使用时间区间的交集为空,则判定供气语音指令对集合中该元素与用户的该燃气使用特征之间不存在关联性,
[0078]
当供气语音指令对集合中元素对应的执行时间区间与用户的燃气使用特征中燃气使用时间区间的交集不为空,则判定供气语音指令对集合中该元素与用户的该燃气使用
特征之间存在关联性;
[0079]
本实施例中用户丁发出一条供气语音指令(g1,g2,g3),
[0080]
若存在三个燃气使用特征,记为甲、乙及丙,
[0081]
甲对应的燃气使用时间区间为[g11,g12],
[0082]
乙对应的燃气使用时间区间为[g21,g23],
[0083]
丙对应的燃气使用时间区间为[g31,g32],
[0084]
若g1<g11<g12<g2<g21<g23<g3<g31<g32,
[0085]
则用户丁发出一条供气语音指令(g1,g2,g3)对应的执行时间区间为[g1,g1+g3],
[0086]
因为[g11,g12]∩[g1,g1+g3]=[g11,g12],
[0087]
[g21,g23]∩[g1,g1+g3]=[g21,g23],
[0088]
[g31,g32]∩[g1,g1+g3]=


[0089]
则甲乙分别与供气语音指令(g1,g2,g3)之间存在关联性,但是丙与供气语音指令(g1,g2,g3)之间不存在关联性。
[0090]
s24、得到用户的各个燃气使用关联数组,每个燃气使用关联数组包括一个或多个供气语音指令对及与供气语音指令对存在关联性的各个燃气使用特征,
[0091]
同一燃气使用关联数组中的每个供气语音指令均与其余供气语音指令对中的一个或多个存在关联关系,
[0092]
当一个供气语音指令对对应执行时间区间中存在一个时间点与另一个供气语音指令对对应执行时间区间的一个时间点差值的绝对值小于数据库中的第二预设值,则判定这两个供气语音指令对之间存在关联关系,
[0093]
当一个供气语音指令对对应执行时间区间中任意一个时间点与另一个供气语音指令对对应执行时间区间的任意一个时间点差值的绝对值均大于等于数据库中的第二预设值,则判定这两个供气语音指令对之间不存在关联关系;
[0094]
本实施例中若存在两个供气语音指令对,且这两个供气语音指令对对应执行时间区间分别为[g1,g1+g3]及[g4,g5],若第二预设值为5分钟,
[0095]
若|g1-g5|<5或|g4-(g1+g3)|<5成立,则判定这两个供气语音指令对存在关联关系,
[0096]
若|g1-g5|≥5且|g4-(g1+g3)|≥5成立,则判定这两个供气语音指令对不存在关联关系;
[0097]
获取用户的每个燃气使用关联数组对应的指令偏差特征时,将用户的第j个燃气使用关联数组对应的指令偏差特征记为{c1j,c2j},所述c1j表示用户的第j个燃气使用关联数组对应的供气时长偏差率,所述c2j表示用户的第j个燃气使用关联数组对应的供气时间利用率占比,
[0098]
当用户的第j个燃气使用关联数组中只存在一个供气语音指令对时,则判定{c1j,c2j}等于{0,0},
[0099]
当用户的第j个燃气使用关联数组中存在n1个供气语音指令对且n1≥2时,则得到用户的第j个燃气使用关联数组对应的指令偏差特征{c1j,c2j},
[0100]
c1j=1/(n1-1)
×

n=1n=n1-1
[(t1
dnj-t
dnj
+tq1
dnj
)/t
dnj
],
[0101]
其中,tq1
dnj
表示用户的第j个燃气使用关联数组中与第n+1个供气语音指令对存
在关联性的各个燃气使用特征中,对应时间点最小的燃气使用特征相应燃气使用时间区间的时长,t
dnj
表示用户的第j个燃气使用关联数组中第n个供气语音指令对内指令内容中供气持续时长,t1
dnj
表示用户的第j个燃气使用关联数组中第n个供气语音指令对内指令内容对应的实际供气持续时长,
[0102]
c2j=∑
n=1n=n1-1
tql
dnj
/(tq1
d(n1-1)j
+∑
n=1n=n1-1
t1
dnj
),
[0103]
其中,tql
dnj
表示用户的第j个燃气使用关联数组中与第n个供气语音指令对存在关联性的各个燃气使用特征分别对应的燃气使用时间区间的并集相应的时长。
[0104]
s3、获取历史数据中不同燃气使用关联数组对应时间区间内的环境状态值,并分析用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系;
[0105]
所述s3中获取历史数据中不同燃气使用关联数组对应时间区间内的环境状态值时,所述燃气使用关联数组对应时间区间为燃气使用关联数组内各个元素分别对应的时间区间的并集,所述燃气使用关联数组对应时间区间内的环境状态值等于燃气使用关联数组对应时间区间内不同时间点分别对应气温的平均值,将用户的第j个燃气使用关联数组对应的环境状态值记为wj;
[0106]
所述s3中分析用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系的方法包括以下步骤:
[0107]
s31、获取用户的燃气使用关联数组对应的指令偏差特征及相应燃气使用关联数组对应的环境状态值;
[0108]
s32、构建每个燃气使用关联数组对应的第一特征状态数据对及第二特征状态数据对,将用户的第j个燃气使用关联数组对应的第一特征状态数据对记为(wj,c1j),将用户的第j个燃气使用关联数组对应的第二特征状态数据对记为(wj,c2j);
[0109]
s33、以o为原点且以环境状态值为x轴且以指令偏差特征中的供气时长偏差率为y轴构建第一平面直角坐标系,并将s32获取的第一特征状态数据对分别对应的标记点在第一平面直角坐标系中相应的坐标点位置进行标记,根据标记点对应的x轴坐标值,将第一平面直角坐标系中相邻的标记点进行连线,得到第一折线图,将第一折线图对应的函数记为g1(x),
[0110]
第一特征状态数据对对应的标记点的第一个数据等于相应第一特征状态数据对中的第一个数据,获取第一个数据相等的不同第一特征状态数据对中第二个数据的平均值,作为相应标记点的第二个数据;
[0111]
s34、以o1为原点且以环境状态值为x1轴且以指令偏差特征中的供气时间利用率占比为y1轴构建第二平面直角坐标系,并将s32获取的第二特征状态数据对分别对应的标记点在第二平面直角坐标系中相应的坐标点位置进行标记,根据标记点对应的x1轴坐标值,将第二平面直角坐标系中相邻的标记点进行连线,得到第二折线图,将第二折线图对应的函数记为g2(x1);
[0112]
s35、得到用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系,所得关系包括函数g1(x)与函数g2(x1)。
[0113]
s4、获取当前时间用户燃气表的运行状态,结合用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系,预测当前时间用户燃气表的指令偏差特征,根据所得预测结果对当前时间用户燃气表接收的最近一次供气语音指令持续时长进行
自适应调节;
[0114]
所述s4中当前时间用户燃气表的运行状态包括最近一次供气语音指令对{r1,r2,r3}、包含最近一次供气语音指令对的燃气使用关联数组e及当前时间对应的气温wr,其中,r1表示最近一次供气语音指令中发出供气语音指令的时间,r2表示最近一次供气语音指令对内指令内容中供气持续时长,r3表示最近一次供气语音指令对中指令内容对应的实际供气持续时长,最近一次供气语音指令对中指令内容对应的实际供气持续时长等于从发出供气语音指令的时间至当前时间的时长;
[0115]
所述s4中预测当前时间用户燃气表的指令偏差特征时,获取wr,获取用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系中的g1(x)及g2(x1);将wr分别代入g1(x)中的x及g2(x1)中的x1,得到当前时间用户燃气表的指令偏差特征的预测值,记为{c1h,c2h}。
[0116]
所述s4中根据所得预测结果对当前时间用户燃气表接收的最近一次供气语音指令持续时长进行自适应调节时,获取当前时间用户燃气表的指令偏差特征的预测值,记为{c1h,c2h},
[0117]
根据公式c1h=1/(n1-1)
×
{(r4-r2)/r2+∑
n2=1n2=n3-1
[(t1
dn2-t
dn2
+tq1
dn2
)/t
dn2
]},得到r4,
[0118]
其中,r4表示第一校准时长,n3表示e中含有的供气语音指令对个数,tq1
dnj
表示e中与第n2+1个供气语音指令对存在关联性的各个燃气使用特征中,对应时间点最小的燃气使用特征相应燃气使用时间区间的时长,t
dn2
表示e中第n2个供气语音指令对内指令内容中供气持续时长,t1
dn2
表示e中第n2个供气语音指令对内指令内容对应的实际供气持续时长,
[0119]
根据公式c2h=(r6+∑
n2=1n2=n3-1
tql
dn2
)/(r5+r3+∑
n=1n2=n3-1
t1
dn2
),得到r5对应的值,
[0120]
其中,r6表示历史数据中与最近一次供气语音指令对存在关联性的各个燃气使用特征分别对应的燃气使用时间区间的并集相应的时长,tql
dn2
表示e中与第n2个供气语音指令对存在关联性的各个燃气使用特征分别对应的燃气使用时间区间的并集相应的时长,r5表示第二校准时长,
[0121]
当r4≤r2,则判定当前时间用户燃气表接收的最近一次供气语音指令对应的持续时长上限值为r2,
[0122]
当r4>r2时,进一步判断当前时间燃气是否为使用状态,
[0123]
如果当前时间用户正在使用燃气,则当前时间用户燃气表接收的最近一次供气语音指令对应的持续时长上限值为max{r5+r3,r4},所述max{r5+r3,r4}表示r5+r3与r4中的最大值,如果当前时间用户未使用燃气,则当前时间用户燃气表接收的最近一次供气语音指令对应的持续时长上限值为max{r2,r3},
[0124]
在当前时间用户燃气表接收的最近一次供气语音指令对应的持续时长上限值为max{r5+r3,r4}的情况下,若[r2,max{r5+r3,r4}]中用户出现停止使用燃气的情况,则燃气表立即停止供气,且当前时间用户燃气表接收的最近一次供气语音指令结束。
[0125]
如图2所示,一种基于物联网的人工智能控制系统,所述系统包括以下模块:
[0126]
供气指令数据获取模块,所述供气指令数据获取模块获取历史数据中用户在不同时间的燃气使用数据,提取用户的燃气使用特征,并获取历史数据中用户对燃气表的供气语音指令对集合;
[0127]
指令偏差特征分析模块,所述指令偏差特征分析模块获取用户的燃气使用特征与供气语音指令对集合中元素之间的关联性,将用户的燃气使用特征与供气语音指令对集合中存在关联关系的元素汇总到一个空白数组中,得到用户的各个燃气使用关联数组,并获取用户的每个燃气使用关联数组对应的指令偏差特征;
[0128]
数据关联关系分析模块,所述数据关联关系分析模块获取历史数据中不同燃气使用关联数组对应时间区间内的环境状态值,并分析用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系;
[0129]
数据预测调节模块,所述数据预测调节模块获取当前时间用户燃气表的运行状态,结合用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系,预测当前时间用户燃气表的指令偏差特征,根据所得预测结果对当前时间用户燃气表接收的最近一次供气语音指令持续时长进行自适应调节。
[0130]
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
[0131]
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

技术特征:
1.一种基于物联网的人工智能控制方法,其特征在于,所述方法包括以下步骤:s1、获取历史数据中用户在不同时间的燃气使用数据,提取用户的燃气使用特征,并获取历史数据中用户对燃气表的供气语音指令对集合;s2、获取用户的燃气使用特征与供气语音指令对集合中元素之间的关联性,将用户的燃气使用特征与供气语音指令对集合中存在关联关系的元素汇总到一个空白数组中,得到用户的各个燃气使用关联数组,并获取用户的每个燃气使用关联数组对应的指令偏差特征;s3、获取历史数据中不同燃气使用关联数组对应时间区间内的环境状态值,并分析用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系;s4、获取当前时间用户燃气表的运行状态,结合用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系,预测当前时间用户燃气表的指令偏差特征,根据所得预测结果对当前时间用户燃气表接收的最近一次供气语音指令持续时长进行自适应调节。2.根据权利要求1所述的一种基于物联网的人工智能控制方法,其特征在于:所述燃气使用数据为燃气表在不同时间对应的数据,将历史数据中时间t时的燃气使用数据记为at,所述提取用户的燃气使用特征时,每个使用特征对应一个燃气使用时间区间及相应时间区间对应的燃气变化量,同一使用特征对应的燃气使用时间区间中不同时间对应的燃气使用数据均不相同,将提取的用户的第i个燃气使用特征记为bi,将bi对应的燃气使用时间区间记为bi1,将bi对应的燃气变化量记为bi2,bi2的值等于bi1中最大时间对应的燃气使用数据与最小时间对应的燃气使用数据之间的差值;所述历史数据中用户对燃气表的供气语音执行对集合中每个元素对应一条供气语音指令对,每个供气语音指令对包括用户发出供气语音指令的时间、指令内容中供气持续时长及指令内容对应的实际供气持续时长。3.根据权利要求2所述的一种基于物联网的人工智能控制方法,其特征在于:所述s2中得到用户的各个燃气使用关联数组的方法包括以下步骤:s21、获取历史数据中提取的用户的各个燃气使用特征及用户对燃气表的供气语音执行对集合;s22、获取用户对燃气表的供气语音执行对集合中每个供气语音执行对对应的执行时间区间,所述供气语音执行对对应的执行时间区间中的最小值等于相应供气语音执行对中用户发出供气语音指令的时间,所述供气语音执行对对应的执行时间区间中的最大值等于相应供气语音执行对中用户发出供气语音指令的时间与指令内容对应的实际供气持续时长之和;s23、判断用户的燃气使用特征与供气语音指令对集合中元素之间关联性,当供气语音指令对集合中元素对应的执行时间区间与用户的燃气使用特征中燃气使用时间区间的交集为空,则判定供气语音指令对集合中该元素与用户的该燃气使用特征之间不存在关联性,当供气语音指令对集合中元素对应的执行时间区间与用户的燃气使用特征中燃气使
用时间区间的交集不为空,则判定供气语音指令对集合中该元素与用户的该燃气使用特征之间存在关联性;s24、得到用户的各个燃气使用关联数组,每个燃气使用关联数组包括一个或多个供气语音指令对及与供气语音指令对存在关联性的各个燃气使用特征,同一燃气使用关联数组中的每个供气语音指令均与其余供气语音指令对中的一个或多个存在关联关系,当一个供气语音指令对对应执行时间区间中存在一个时间点与另一个供气语音指令对对应执行时间区间的一个时间点差值的绝对值小于数据库中的第二预设值,则判定这两个供气语音指令对之间存在关联关系,当一个供气语音指令对对应执行时间区间中任意一个时间点与另一个供气语音指令对对应执行时间区间的任意一个时间点差值的绝对值均大于等于数据库中的第二预设值,则判定这两个供气语音指令对之间不存在关联关系;获取用户的每个燃气使用关联数组对应的指令偏差特征时,将用户的第j个燃气使用关联数组对应的指令偏差特征记为{c1j,c2j},所述c1j表示用户的第j个燃气使用关联数组对应的供气时长偏差率,所述c2j表示用户的第j个燃气使用关联数组对应的供气时间利用率占比,当用户的第j个燃气使用关联数组中只存在一个供气语音指令对时,则判定{c1j,c2j}等于{0,0},当用户的第j个燃气使用关联数组中存在n1个供气语音指令对且n1≥2时,则得到用户的第j个燃气使用关联数组对应的指令偏差特征{c1j,c2j},c1j=1/(n1-1)
×

n=1n=n1-1
[(t1
dnj-t
dnj
+tq1
dnj
)/t
dnj
],其中,tq1
dnj
表示用户的第j个燃气使用关联数组中与第n+1个供气语音指令对存在关联性的各个燃气使用特征中,对应时间点最小的燃气使用特征相应燃气使用时间区间的时长,t
dnj
表示用户的第j个燃气使用关联数组中第n个供气语音指令对内指令内容中供气持续时长,t1
dnj
表示用户的第j个燃气使用关联数组中第n个供气语音指令对内指令内容对应的实际供气持续时长,c2j=∑
n=1n=n1-1
tql
dnj
/(tq1
d(n1-1)j
+∑
n=1n=n1-1
t1
dnj
),其中,tql
dnj
表示用户的第j个燃气使用关联数组中与第n个供气语音指令对存在关联性的各个燃气使用特征分别对应的燃气使用时间区间的并集相应的时长。4.根据权利要求3所述的一种基于物联网的人工智能控制方法,其特征在于:所述s3中获取历史数据中不同燃气使用关联数组对应时间区间内的环境状态值时,所述燃气使用关联数组对应时间区间为燃气使用关联数组内各个元素分别对应的时间区间的并集,所述燃气使用关联数组对应时间区间内的环境状态值等于燃气使用关联数组对应时间区间内不同时间点分别对应气温的平均值,将用户的第j个燃气使用关联数组对应的环境状态值记为wj;所述s3中分析用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系的方法包括以下步骤:s31、获取用户的燃气使用关联数组对应的指令偏差特征及相应燃气使用关联数组对应的环境状态值;
s32、构建每个燃气使用关联数组对应的第一特征状态数据对及第二特征状态数据对,将用户的第j个燃气使用关联数组对应的第一特征状态数据对记为(wj,c1j),将用户的第j个燃气使用关联数组对应的第二特征状态数据对记为(wj,c2j);s33、以o为原点且以环境状态值为x轴且以指令偏差特征中的供气时长偏差率为y轴构建第一平面直角坐标系,并将s32获取的第一特征状态数据对分别对应的标记点在第一平面直角坐标系中相应的坐标点位置进行标记,根据标记点对应的x轴坐标值,将第一平面直角坐标系中相邻的标记点进行连线,得到第一折线图,将第一折线图对应的函数记为g1(x),第一特征状态数据对对应的标记点的第一个数据等于相应第一特征状态数据对中的第一个数据,获取第一个数据相等的不同第一特征状态数据对中第二个数据的平均值,作为相应标记点的第二个数据;s34、以o1为原点且以环境状态值为x1轴且以指令偏差特征中的供气时间利用率占比为y1轴构建第二平面直角坐标系,并将s32获取的第二特征状态数据对分别对应的标记点在第二平面直角坐标系中相应的坐标点位置进行标记,根据标记点对应的x1轴坐标值,将第二平面直角坐标系中相邻的标记点进行连线,得到第二折线图,将第二折线图对应的函数记为g2(x1);s35、得到用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系,所得关系包括函数g1(x)与函数g2(x1)。5.根据权利要求4所述的一种基于物联网的人工智能控制方法,其特征在于:所述s4中当前时间用户燃气表的运行状态包括最近一次供气语音指令对{r1,r2,r3}、包含最近一次供气语音指令对的燃气使用关联数组e及当前时间对应的气温wr,其中,r1表示最近一次供气语音指令中发出供气语音指令的时间,r2表示最近一次供气语音指令对内指令内容中供气持续时长,r3表示最近一次供气语音指令对中指令内容对应的实际供气持续时长,最近一次供气语音指令对中指令内容对应的实际供气持续时长等于从发出供气语音指令的时间至当前时间的时长。6.根据权利要求5所述的一种基于物联网的人工智能控制方法,其特征在于:所述s4中预测当前时间用户燃气表的指令偏差特征时,获取wr,获取用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系中的g1(x)及g2(x1);将wr分别代入g1(x)中的x及g2(x1)中的x1,得到当前时间用户燃气表的指令偏差特征的预测值,记为{c1
h
,c2
h
}。7.根据权利要求6所述的一种基于物联网的人工智能控制方法,其特征在于:所述s4中根据所得预测结果对当前时间用户燃气表接收的最近一次供气语音指令持续时长进行自适应调节时,获取当前时间用户燃气表的指令偏差特征的预测值,记为{c1
h
,c2
h
},根据公式c1
h
=1/(n1-1)
×
{(r4-r2)/r2+∑
n2=1n2=n3-1
[(t1
dn2-t
dn2
+tq1
dn2
)/t
dn2
]},得到r4,其中,r4表示第一校准时长,n3表示e中含有的供气语音指令对个数,tq1
dnj
表示e中与第n2+1个供气语音指令对存在关联性的各个燃气使用特征中,对应时间点最小的燃气使用特征相应燃气使用时间区间的时长,t
dn2
表示e中第n2个供气语音指令对内指令内容中供气持续时长,t1
dn2
表示e中第n2个供气语音指令对内指令内容对应的实际供气持续时长,
根据公式c2
h
=(r6+∑
n2=1n2=n3-1
tql
dn2
)/(r5+r3+∑
n=1n2=n3-1
t1
dn2
),得到r5对应的值,其中,r6表示历史数据中与最近一次供气语音指令对存在关联性的各个燃气使用特征分别对应的燃气使用时间区间的并集相应的时长,tql
dn2
表示e中与第n2个供气语音指令对存在关联性的各个燃气使用特征分别对应的燃气使用时间区间的并集相应的时长,r5表示第二校准时长,当r4≤r2,则判定当前时间用户燃气表接收的最近一次供气语音指令对应的持续时长上限值为r2,当r4>r2时,进一步判断当前时间燃气是否为使用状态,如果当前时间用户正在使用燃气,则当前时间用户燃气表接收的最近一次供气语音指令对应的持续时长上限值为max{r5+r3,r4},所述max{r5+r3,r4}表示r5+r3与r4中的最大值,如果当前时间用户未使用燃气,则当前时间用户燃气表接收的最近一次供气语音指令对应的持续时长上限值为max{r2,r3},在当前时间用户燃气表接收的最近一次供气语音指令对应的持续时长上限值为max{r5+r3,r4}的情况下,若[r2,max{r5+r3,r4}]中用户出现停止使用燃气的情况,则燃气表立即停止供气,且当前时间用户燃气表接收的最近一次供气语音指令结束。8.应用权利要求1-7中任意一项所述的一种基于物联网的人工智能控制方法的基于物联网的人工智能控制系统,其特征在于,所述系统包括以下模块:供气指令数据获取模块,所述供气指令数据获取模块获取历史数据中用户在不同时间的燃气使用数据,提取用户的燃气使用特征,并获取历史数据中用户对燃气表的供气语音指令对集合;指令偏差特征分析模块,所述指令偏差特征分析模块获取用户的燃气使用特征与供气语音指令对集合中元素之间的关联性,将用户的燃气使用特征与供气语音指令对集合中存在关联关系的元素汇总到一个空白数组中,得到用户的各个燃气使用关联数组,并获取用户的每个燃气使用关联数组对应的指令偏差特征;数据关联关系分析模块,所述数据关联关系分析模块获取历史数据中不同燃气使用关联数组对应时间区间内的环境状态值,并分析用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系;数据预测调节模块,所述数据预测调节模块获取当前时间用户燃气表的运行状态,结合用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系,预测当前时间用户燃气表的指令偏差特征,根据所得预测结果对当前时间用户燃气表接收的最近一次供气语音指令持续时长进行自适应调节。

技术总结
本发明涉及物联网技术领域,具体为一种基于物联网的人工智能控制系统及方法,所述系统包括数据预测调节模块,所述数据预测调节模块获取当前时间用户燃气表的运行状态,结合用户的燃气使用关联数组对应的指令偏差特征与相应的环境状态值之间的关系,预测当前时间用户燃气表的指令偏差特征,根据所得预测结果对当前时间用户燃气表接收的最近一次供气语音指令持续时长进行自适应调节。本发明结合用户历史数据分析用户对燃气的使用习惯情况,并考虑到监测时用户的实际状态,实现对用户发出的语音指令内容的自适应调节,降低了用户二次发出语音指令的概率,实现了对燃气表供气时长的有效管理。效管理。效管理。


技术研发人员:刘恒 熊斌 赵红旭 陈丹 杨泽彪 潘炎 罗妙桦
受保护的技术使用者:广州金燃智能系统有限公司
技术研发日:2023.07.06
技术公布日:2023/8/24
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

飞机超市 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

相关推荐