粘接剂用组合物和膜状粘接剂、以及使用了膜状粘接剂的半导体封装及其制造方法与流程
未命名
09-02
阅读:101
评论:0

1.本发明涉及粘接剂用组合物和膜状粘接剂、以及使用了膜状粘接剂的半导体封装及其制造方法。
背景技术:
2.近年来,正在普及将半导体芯片多层层积而成的堆栈型mcp(multi chip package,多芯片封装),其搭载于移动电话、便携式音响设备用的内存封装。另外,随着移动电话等的多功能化,封装的高密度化、高集成化也不断推进。与之相伴,半导体芯片的多层层积化正在发展。
3.这种内存封装的制造过程中的配线基板与半导体芯片的粘接、以及半导体芯片间的粘接使用了热固性的膜状粘接剂(芯片贴装膜、粘晶膜)。随着芯片的多层层积化,芯片贴装膜进一步薄型化。另外,随着晶片配线规则的微细化,在半导体元件表面容易产生热。因此,为了使热向封装外部散出,在芯片贴装膜混配导热性的填料,实现了高导热性。
4.作为旨在所谓芯片贴装膜用途的热固性膜状粘接剂的材料,例如,已知组合了环氧树脂、环氧树脂的固化剂、高分子化合物和无机填充材料(无机填料)的组成,提出了使用聚氨酯树脂或苯氧基树脂作为高分子化合物等(例如专利文献1和2)。
5.现有技术文献
6.专利文献
7.专利文献1:国际公开第2012/160916号
8.专利文献2:国际公开第2021/033368号
技术实现要素:
9.发明所要解决的课题
10.已知一种应用了芯片贴装膜的切晶/芯片贴装膜。该切晶/芯片贴装膜具有层积了切晶膜和芯片贴装膜的结构,在将半导体晶片切断分离(切割)成各个芯片时,作为层积结构整体,作为用于固定半导体晶片的切晶带发挥功能。接着,在拾取被切断的半导体芯片时,通过切割与半导体晶片一起被切断而单片化的芯片贴装膜与半导体芯片一起从切晶膜分离。在拾取后的安装中,对于引线框架、配线基板、半导体芯片等,通过来自芯片贴装膜的粘接剂层粘接半导体芯片。
11.考虑到在半导体晶片上的粘贴、切割时在环形框上的安装等操作性,该切晶/芯片贴装膜通常以实施了预切割加工成所期望的形状的方式提供。作为实施了预切割加工的切晶/芯片贴装膜的方式的一例,例如可以举出下述方式:在长基材(脱模膜)上,沿长度方向隔开一定的间隔反复形成与半导体晶片对应的圆形的芯片贴装膜(膜状粘接剂),在其上以同心状层积有直径比芯片贴装膜略大的切晶膜。
12.在实施了预切割加工的切晶/芯片贴装膜的制造时,进行下述操作:
13.1)在长基材的整个面涂布粘接剂用组合物并干燥,对于所得到的芯片贴装膜,用与半导体晶片对应形状(圆形)的刀刃形成切痕,一边将圆形部分残留在基材上一边将圆形部分外侧的芯片贴装膜(不需要部分)从基材剥离并同时进行卷取(将该操作称为“不需要部分的卷取”),形成圆形的芯片贴装膜;
14.2)从该圆形的芯片贴装膜上,在基材的整个面层积切晶带,对于切晶带,用与环形框对应形状(圆形)的刀刃形成切痕,一边残留圆形部分一边将圆形部分外侧的切晶带从基材剥离并同时进行卷取。
15.在上述圆形部分的不需要部分的卷取时,卷取中的不需要部分有时会断裂。若发生这样的断裂,则需要暂时停止不需要部分的卷取操作,在能够卷取后重新开始操作,会导致无法连续卷取而生产率(预切割加工性)降低。该预切割加工性的不良随着无机填充材料向芯片贴装膜的填充量的增加、芯片贴装膜的薄型化而更加显著。
16.另外,随着芯片贴装膜的薄型化,在半导体组装工序中,下述两个问题也有显著化的倾向。
17.第一,在半导体晶片等被粘接体的背面层压芯片贴装膜的工序中,容易将空气(空隙)卷入被粘接体与芯片贴装膜之间的层压性的问题。被卷入的空气使热固化后的粘接力降低。
18.第二,一体地切割被粘接体和芯片贴装膜时产生的切削屑附着于被粘接体表面而容易产生污染残渣的切削性的问题。该切削性的问题是由于,在芯片贴装膜被切断时,被切割刀片切断而形成的粉状的碎屑进一步因切割刀片的旋转产生的热而熔化,成为线状。
19.本发明的课题在于提供一种预切割加工性、层压性和切割工序时的切削性均优异的膜状粘接剂、以及适于获得该膜状粘接剂的粘接剂用组合物。进而,本发明的课题在于提供一种使用了该膜状粘接剂的半导体封装及其制造方法。
20.用于解决课题的手段
21.本发明人鉴于上述课题进行了反复深入的研究,结果发现,在使膜状粘接剂为组合含有环氧树脂、环氧树脂固化剂、聚氨酯树脂和无机填充材料的组成的粘接剂用组合物中,通过使用特定量的特定储能模量的树脂作为聚氨酯树脂,并使形成膜状粘接剂时(从粘接剂用组合物中除去溶剂而形成b阶段的状态(固化前的状态)时)的拉伸应力最大值控制为特定值以上,能够解决上述课题。
22.本发明是基于上述技术思想进一步反复研究而完成的。
23.本发明的上述课题通过下述手段得以解决。
24.1.25.一种粘接剂用组合物,其为含有环氧树脂(a)、环氧树脂固化剂(b)、聚氨酯树脂(c)和无机填充材料(d)的粘接剂用组合物,其中,
26.上述聚氨酯树脂(c)在动态粘弹性测定中的25℃的储能模量为8.0mpa以上,
27.上述聚氨酯树脂(c)在上述环氧树脂(a)和上述聚氨酯树脂(c)的各含量的合计中所占的比例为2.0质量%~50.0质量%,
28.对使用上述粘接剂用组合物形成的膜状粘接剂施加拉伸力时的应力-应变曲线的拉伸最大应力值为7.0mpa以上。
29.2.30.如[1]所述的粘接剂用组合物,其中,将使用上述粘接剂用组合物形成的膜状粘接剂以5℃/分钟的升温速度从25℃升温时,70℃的熔融粘度为50000pa
·
s以下。
[0031]
[3]
[0032]
一种膜状粘接剂,其由[1]或[2]所述的粘接剂用组合物获得。
[0033]
[4]
[0034]
如[3]所述的膜状粘接剂,其厚度为1μm~20μm。
[0035]
[5]
[0036]
一种半导体封装的制造方法,其包括下述工序:
[0037]
第1工序,将[3]或[4]所述的膜状粘接剂热压接到表面形成有至少1个半导体电路的半导体晶片的背面而设置粘接剂层,隔着上述粘接剂层设置切晶膜;
[0038]
第2工序,一体地切割上述半导体晶片和上述粘接剂层,由此在切晶膜上得到具备膜状粘接剂片和半导体芯片的带粘接剂层的半导体芯片;
[0039]
第3工序,从上述切晶膜剥离上述带粘接剂层的半导体芯片,隔着上述粘接剂层对上述带粘接剂层的半导体芯片和配线基板进行热压接;和
[0040]
第4工序,将上述粘接剂层热固化。
[0041]
[6]
[0042]
一种半导体封装,其中,半导体芯片与配线基板或半导体芯片间是通过[3]或[4]所述的膜状粘接剂的热固化体而粘接的。
[0043]
本发明中,使用“~”表示的数值范围是指包括在“~”前后记载的数值作为下限值和上限值的范围。
[0044]
发明的效果
[0045]
本发明的膜状粘接剂在预切割加工中在不需要部分的卷取时不需要部分难以断裂,在向被粘接体贴附(层压)时能够抑制空隙的形成,在切割时能够抑制切削屑的产生。
[0046]
本发明的粘接剂用组合物适于获得上述膜状粘接剂。
[0047]
根据本发明的制造方法,能够使用上述膜状粘接剂来制造半导体封装。
附图说明
[0048]
图1是示出本发明的半导体封装的制造方法的第1工序的一个优选实施方式的示意性纵截面图。
[0049]
图2是示出本发明的半导体封装的制造方法的第2工序的一个优选实施方式的示意性纵截面图。
[0050]
图3是示出本发明的半导体封装的制造方法的第3工序的一个优选实施方式的示意性纵截面图。
[0051]
图4是示出本发明的半导体封装的制造方法的连接键合引线的工序的一个优选实施方式的示意性纵截面图。
[0052]
图5是示出本发明的半导体封装的制造方法的多层层积实施方式例的示意性纵截面图。
[0053]
图6是示出本发明的半导体封装的制造方法的另一多层层积实施方式例的示意性纵截面图。
[0054]
图7是示出通过本发明的半导体封装的制造方法所制造的半导体封装的一个优选实施方式的示意性纵截面图。
具体实施方式
[0055]
[粘接剂用组合物]
[0056]
本发明的粘接剂用组合物为适合本发明的膜状粘接剂的形成的组合物。
[0057]
本发明的粘接剂用组合物含有环氧树脂(a)、环氧树脂固化剂(b)、聚氨酯树脂(c)和无机填充材料(d)。聚氨酯树脂(c)在动态粘弹性测定中的25℃的储能模量为8.0mpa以上。另外,上述聚氨酯树脂(c)在环氧树脂(a)和上述聚氨酯树脂(c)的各含量的合计中所占的比例控制为2质量%~50质量%。
[0058]
对使用该粘接剂用组合物形成的膜状粘接剂施加拉伸力时的应力-应变曲线的拉伸最大应力值为7.0mpa以上。该拉伸最大应力值的详细情况在后述的[膜状粘接剂]中进行说明。进而,使用上述粘接剂用组合物形成的膜状粘接剂优选示出在后述的[膜状粘接剂]中说明的特性(例如,70℃的熔融粘度、拉伸弹性模量)。
[0059]
以下,对粘接剂用组合物中包含的各成分进行说明。
[0060]
《环氧树脂(a)》
[0061]
上述环氧树脂(a)优选为具有环氧基的热固化型的树脂,其环氧当量为500g/eq以下。环氧树脂(a)可以为液体、固体或半固体中的任一种。本发明中,液体是指软化点小于25℃,固体是指软化点为60℃以上,半固体是指软化点处于上述液体的软化点与固体的软化点之间(25℃以上且小于60℃)。作为本发明中使用的环氧树脂(a),从获得能够在适宜的温度范围(例如60℃~120℃)达到低熔融粘度的膜状粘接剂的方面考虑,优选软化点为100℃以下。需要说明的是,本发明中,软化点是通过软化点试验(环球式)法(测定条件:依据jis-k7234:1986)测定的值。
[0062]
对于本发明中使用的环氧树脂(a)而言,从提高热固化体的交联密度的方面考虑,环氧当量优选为150g/eq~450g/eq。需要说明的是,本发明中,环氧当量是指包含1克当量的环氧基的树脂的克数(g/eq)。
[0063]
环氧树脂(a)的重均分子量通常优选小于10000、更优选为5000以下。下限值没有特别限制,实际为300以上。
[0064]
重均分子量是由gpc(凝胶渗透色谱)分析得到的值(以下,只要没有特别声明,则对于其他树脂也同样)。
[0065]
作为环氧树脂(a)的骨架,可以举出苯酚酚醛清漆型、邻甲酚酚醛清漆型、甲酚酚醛清漆型、双环戊二烯型、联苯型、芴双酚型、三嗪型、萘酚型、萘二酚型、三苯甲烷型、四苯基型、双酚a型、双酚f型、双酚ad型、双酚s型、三羟甲基甲烷型等。其中,从获得树脂的结晶性低、且具有良好外观的膜状粘接剂的方面考虑,优选为三苯甲烷型、双酚a型、甲酚酚醛清漆型、邻甲酚酚醛清漆型。
[0066]
在本发明的粘接剂用组合物中构成膜状粘接剂的成分(具体而言,溶剂以外的成分、即固体成分)的总含量100质量份中,环氧树脂(a)的含量优选为3质量份~70质量份、优选为10质量份~60质量份、更优选为15质量份~50质量份、也优选为20质量份~40质量份、也优选为20质量份~30质量份、也优选为20质量份~28质量份。通过为上述优选的上限值
以下,在较小的温度变化下能够不易发生膜状态(膜粘性等)的变化,在半导体组装工序温度以上(例如贴合至晶片的70℃以上)能够熔融。
[0067]
《环氧树脂固化剂(b)》
[0068]
作为上述环氧树脂固化剂(b),可以使用胺类、酸酐类、多元酚类等任意的固化剂。本发明中,从制成为低熔融粘度、并且在超过某一温度的高温下发挥出固化性、具有快速固化性、进而能够在室温下长期保存的保存稳定性高的膜状粘接剂的方面考虑,优选使用潜在性固化剂。
[0069]
作为潜在性固化剂,可以举出双氰胺化合物、咪唑化合物、固化催化剂复合系多元酚化合物、酰肼化合物、三氟化硼-胺络合物、胺酰亚胺化合物、多元胺盐、以及它们的改性物或将其制成微胶囊型的潜在性固化剂。它们可以单独使用1种,或者也可以将2种以上组合使用。从具有更优异的潜在性(室温下的稳定性优异、并且通过加热发挥出固化性的性质)、且固化速度更快的方面考虑,更优选使用咪唑化合物。
[0070]
粘接剂用组合物中的环氧树脂固化剂(b)的含量根据固化剂的种类、反应形态适当设定即可。例如,相对于环氧树脂(a)100质量份能够为0.5质量份~100质量份,可以为1质量份~80质量份,可以为2质量份~50质量份,也可以为4质量份~20质量份。另外,使用咪唑化合物作为环氧树脂固化剂(b)的情况下,相对于环氧树脂(a)100质量份,优选使咪唑化合物为0.5质量份~10质量份,也优选为1质量份~5质量份。通过使环氧树脂固化剂(b)的含量为上述优选的下限值以上,能够进一步缩短固化时间,另一方面,通过为上述优选的上限值以下,能够抑制过剩的固化剂在膜状粘接剂中残留。其结果,能够抑制残留固化剂的水分吸附,能够实现半导体装置的可靠性的提高。
[0071]
《聚氨酯树脂(c)》
[0072]
聚氨酯树脂(c)是在主链中具有氨基甲酸酯(氨基甲酸酯)键的聚合物。聚氨酯树脂(c)可以具有来自多元醇的结构单元和来自多异氰酸酯的结构单元,还可以具有来自聚羧酸的结构单元。聚氨酯树脂可以单独使用1种或者将2种以上组合使用。
[0073]
聚氨酯树脂(c)在动态粘弹性测定中的25℃的储能模量为8.0mpa以上。聚氨酯树脂(c)的25℃的储能模量优选为50.0mpa以上、更优选为70.0mpa以上、进一步优选为90.0mpa以上。另外,聚氨酯树脂(c)的25℃的储能模量通常为1000.0mpa以下、更优选为800.0mpa以下、进一步优选为700.0mpa以下、进一步优选为650.0mpa以下。因此,上述储能模量优选为8.0mpa~1000.0mpa、更优选为50.0mpa~800.0mpa以下、进一步优选为90.0mpa~700.0mpa。
[0074]
聚氨酯树脂(c)在动态粘弹性测定中的tanδ的峰顶温度(与玻璃化转变温度含义相同,也称为tg)优选为-10℃以上、更优选为-5℃以上、更优选为0℃以上、更优选为2℃以上、进一步优选为3℃以上。另外,聚氨酯树脂(c)的tg通常为100℃以下、优选为60℃以下、更优选为50℃以下、也优选为45℃以下。通过使tg在上述范围内,在膜状粘接剂中,能够进一步提高预切割加工性和切割工序时的切削性。
[0075]
上述储能模量和tg由后述实施例中记载的方法决定。即,使用将聚氨酯树脂溶解于有机溶剂中而成的清漆形成涂膜,接着干燥,使用动态粘弹性测定装置(商品名:rheogel-e4000f、株式会社ubm制造)在测定温度范围20℃~300℃、升温速度5℃/分钟和频率1hz的条件下对所得到的聚氨酯树脂构成的膜进行测定。由测定值读取25℃的储能模量
作为上述储能模量,另外,将tanδ峰顶温度(tanδ显示出极大的温度)作为玻璃化转变温度(tg)。
[0076]
聚氨酯树脂(c)的重均分子量没有特别限制,通常使用在5000~500000的范围内的物质。
[0077]
聚氨酯树脂(c)的含量以聚氨酯树脂(c)在环氧树脂(a)和聚氨酯树脂(c)的各含量的合计中所占的比例计为2.0质量%~50.0质量%、优选为4.0质量%~40.0质量%、更优选为6.0质量%~40.0质量%、进一步优选为7.0质量%~40.0质量%、进一步优选为8.0质量%~38.0质量%、进一步优选为10.0质量%~35.0质量%、进一步优选为10.0质量%~30.0质量%。
[0078]
聚氨酯树脂(c)可以通过常规方法合成,另外也可以从市场获得。作为可适用于聚氨酯树脂(c)的市售品,可以举出dynaleo va-9320m、dynaleo va-9310mf、dynaleo va-9303mf(均为toyochem公司制造)等。
[0079]
《无机填充材料(d)》
[0080]
无机填充材料(d)可以没有特别限制地使用通常可用于粘接剂用组合物的无机填充材料。
[0081]
作为无机填充材料(d),可以举出例如:二氧化硅、粘土、石膏、碳酸钙、硫酸钡、氧化铝(三氧化二铝)、氧化铍、氧化镁、碳化硅、氮化硅、氮化铝、氮化硼等陶瓷类;铝、铜、银、金、镍、铬、铅、锡、锌、钯、焊料等金属、或合金类;碳纳米管、碳纳米纤维、石墨烯等碳类等各种无机粉末。
[0082]
无机填充材料(d)的平均粒径(d50)没有特别限定,从膜状粘接剂的薄型化的方面考虑,优选为0.01μm~6.0μm、优选为0.01μm~5.0μm、更优选为0.1μm~3.5μm、进一步优选为0.3μm~3.0μm。平均粒径(d50)是指所谓中值粒径,是通过激光衍射/散射法测定粒度分布,将颗粒的总体积设为100%时在累积分布中达到50%累积时的粒径。
[0083]
无机填充材料的莫氏硬度没有特别限定,优选为2以上、更优选为2~9。莫氏硬度可以利用莫氏硬度计进行测定。
[0084]
上述无机填充材料(d)可以为包含具有导热性的无机填充材料(导热系数为12w/m
·
k以上的无机填充材料)的方式,也可以为包含不具有导热性的无机填充材料(导热系数小于12w/m
·
k的无机填充材料)的方式。
[0085]
具有导热性的无机填充材料(d)是由导热性材料构成的颗粒或表面被覆有导热性材料的颗粒,这些导热性材料的导热系数优选为12w/m
·
k以上、更优选为30w/m
·
k以上。
[0086]
若上述导热性材料的导热系数为上述优选下限值以上,则能够减少为了获得目标导热系数而混配的无机填充材料(d)的量,能够抑制芯片贴装膜的熔融粘度的上升,进一步提高压接在基板时对于基板的凹凸部的埋入性。结果能够更可靠地抑制空隙的产生。
[0087]
本发明中,上述导热性材料的导热系数是指25℃的导热系数,可以使用各材料的文献值。在文献中无记载的情况下,例如,若导热性材料为陶瓷,则可替用根据jis r 1611:2010所测得的值,若导热性材料为金属,则可替用根据jis h 7801:2005所测得的值。
[0088]
作为具有导热性的无机填充材料(d),可以举出例如导热性的陶瓷,优选可以举出氧化铝颗粒(导热系数:36w/m
·
k)、氮化铝颗粒(导热系数:150w/m
·
k~290w/m
·
k)、氮化硼颗粒(导热系数:60w/m
·
k)、氧化锌颗粒(导热系数:54w/m
·
k)、氮化硅填料(导热系数:
27w/m
·
k)、碳化硅颗粒(导热系数:200w/m
·
k)和氧化镁颗粒(导热系数:59w/m
·
k)。
[0089]
特别是,从具有高导热系数、以及分散性、获得容易性的方面考虑,优选氧化铝颗粒。另外,氮化铝颗粒、氮化硼颗粒与氧化铝颗粒相比具有更高的导热系数,从该方面考虑是优选的。本发明中,其中优选氧化铝颗粒和氮化铝颗粒。
[0090]
另外,也可以举出具有比陶瓷高的导热性的金属颗粒、或者表面被覆有金属的颗粒。例如,优选可以举出银(导热系数:429w/m
·
k)、镍(导热系数:91w/m
·
k)和金(导热系数:329w/m
·
k)等单一金属填料、或者表面被覆有这些金属的丙烯酸类或有机硅树脂等高分子颗粒。
[0091]
本发明中,其中从高导热系数和耐氧化劣化的方面考虑,更优选金、或者银颗粒等。
[0092]
本发明中,也优选使用氧化铝、银或二氧化硅作为无机填充材料(d)。
[0093]
无机填充材料(d)可以进行了表面处理或表面改性,作为这种表面处理或表面改性中使用的表面处理剂,可以举出硅烷偶联剂、磷酸或磷酸化合物、表面活性剂,除本说明书中记载的事项以外,例如也可以应用国际公开第2018/203527号中的导热填料的项或国际公开第2017/158994号的氮化铝填充材料的项中的硅烷偶联剂、磷酸或磷酸化合物和表面活性剂的记载。
[0094]
作为将无机填充材料(d)混配到环氧树脂(a)、环氧树脂固化剂(b)和聚氨酯树脂(c)等树脂成分中的方法,可以使用:将粉体状的无机填充材料和根据需要的硅烷偶联剂、磷酸或磷酸化合物和表面活性剂直接混配的方法(整体掺混法);或者将利用硅烷偶联剂、磷酸或磷酸化合物和表面活性剂进行了处理的无机填充材料分散于有机溶剂中,混配所得到的浆料状无机填充材料的方法。
[0095]
另外,作为利用硅烷偶联剂对无机填充材料(d)进行处理的方法没有特别限定,可以举出:在溶剂中混合无机填充材料(d)和硅烷偶联剂的湿式法;在气相中对无机填充材料(d)和硅烷偶联剂进行混合的干式法;上述整体掺混法;等。
[0096]
特别是,氮化铝颗粒虽然有助于高导热化,但容易因水解而生成铵离子,因此优选与吸湿率小的酚醛树脂合用、或通过表面改性来抑制水解。作为氮化铝颗粒的表面改性方法,特别优选下述方法:在表面层设置氧化铝的氧化物层来提高耐水性,利用磷酸或磷酸化合物进行表面处理来提高与树脂的亲和性。
[0097]
硅烷偶联剂是在硅原子上键合有至少1个烷氧基、芳氧基之类的水解性基团的化合物,除此以外,也可以键合烷基、烯基、芳基。烷基优选为取代有氨基、烷氧基、环氧基、(甲基)丙烯酰氧基的烷基,更优选为取代有氨基(优选苯基氨基)、烷氧基(优选环氧丙氧基)、(甲基)丙烯酰氧基的烷基。
[0098]
硅烷偶联剂可以举出例如2-(3,4-环氧环己基)乙基三甲氧基硅烷、3-环氧丙氧基丙基三甲氧基硅烷、3-环氧丙氧基丙基三乙氧基硅烷、3-环氧丙氧基丙基甲基二甲氧基硅烷、3-环氧丙氧基丙基甲基二乙氧基硅烷、二甲基二甲氧基硅烷、二甲基二乙氧基硅烷、甲基三甲氧基硅烷、甲基三乙氧基硅烷、苯基三甲氧基硅烷、苯基三乙氧基硅烷、n-苯基-3-氨基丙基三甲氧基硅烷、3-甲基丙烯酰氧基丙基甲基二甲氧基硅烷、3-甲基丙烯酰氧基丙基三甲氧基硅烷、3-甲基丙烯酰氧基丙基甲基二乙氧基硅烷、3-甲基丙烯酰氧基丙基三乙氧基硅烷等。
[0099]
硅烷偶联剂、表面活性剂相对于无机填充材料(d)100质量份优选含有0.1质量份~25.0质量份,更优选含有0.1质量份~10质量份、进一步优选含有0.1质量份~2.0质量份。
[0100]
通过使硅烷偶联剂、表面改性剂的含量为上述优选的范围,能够抑制无机填充材料(d)的凝聚,并且能够抑制过量的硅烷偶联剂及表面活性剂在半导体组装加热工序(例如回焊工序)中挥发而导致的粘接界面处的剥离,抑制空隙的产生。
[0101]
无机填充材料(d)的形状可以举出薄片状、针状、纤丝状、球状、鳞片状的形状,从高填充化和流动性的方面出发,优选球状颗粒。
[0102]
本发明的粘接剂用组合物中,无机填充材料(d)在本发明的粘接剂用组合物中的构成膜状粘接剂的成分(具体而言,溶剂以外的成分、即固体成分)的总含量中所占的比例优选为5体积%~70体积%。若为上述上限值以下,则能够抑制空隙的产生。另外,还能减小固化收缩,降低线膨胀系数,缓和热变化时半导体封装中产生的内部应力,有时也能够提高粘接力。
[0103]
上述无机填充材料(d)的比例优选为20体积%~70体积%、更优选为20体积%~60体积%、进一步优选为20体积%~50体积%、进一步优选为25体积%~50体积%。上述无机填充材料的(d)的比例也可以为30体积%~70体积%。
[0104]
上述无机填充材料(d)的含量(体积%)可以由环氧树脂(a)、环氧树脂固化剂(b)、聚氨酯树脂(c)和无机填充材料(d)等各成分的含有质量和比重算出。
[0105]
(其他成分)
[0106]
除了环氧树脂(a)、环氧树脂固化剂(b)、聚氨酯树脂(c)和无机填充材料(d)以外,本发明的粘接剂用组合物也可以在不损害本发明效果的范围内含有这些以外的高分子化合物。
[0107]
作为上述高分子化合物,可以举出例如:天然橡胶、丁基橡胶、异戊二烯橡胶、氯丁橡胶、硅酮橡胶、乙烯-乙酸乙烯酯共聚物、乙烯-(甲基)丙烯酸共聚物、乙烯-(甲基)丙烯酸酯共聚物、聚丁二烯树脂、聚碳酸酯树脂、热塑性聚酰亚胺树脂、6-尼龙或6,6-尼龙等聚酰胺树脂、(甲基)丙烯酸类树脂、聚对苯二甲酸乙二醇酯和聚对苯二甲酸丁二醇酯等聚酯树脂、聚酰胺酰亚胺树脂、氟树脂、苯氧基树脂等。这些高分子化合物可以单独使用,或者也可以将两种以上组合使用。
[0108]
另外,本发明的粘接剂用组合物也可以进一步含有有机溶剂(甲基乙基酮等)、离子捕获剂(离子捕捉剂)、固化催化剂、粘度调节剂、抗氧化剂、阻燃剂、着色剂等。例如,可以包含国际公开第2017/158994号的其他添加物。
[0109]
环氧树脂(a)、环氧树脂固化剂(b)、聚氨酯树脂(c)和无机填充材料(d)的各含量的合计在本发明的粘接剂用组合物中所占的比例例如可以为60质量%以上,优选为70质量%以上、进一步优选为80质量%以上、也可以为90质量%以上。另外,上述比例可以为100质量%、也可以为95质量%以下。
[0110]
本发明的粘接剂用组合物可以适合用于获得本发明的膜状粘接剂。但是,并不限于膜状的粘接剂,也可以适合用于获得液态的粘接剂。
[0111]
本发明的粘接剂用组合物可以通过在环氧树脂(a)实际上不固化的温度下将上述各成分混合而获得。混合的顺序没有特别限定。也可以将环氧树脂(a)、聚氨酯树脂(c)等树
脂成分根据需要与溶剂一起混合,之后混合无机填充材料(d)和环氧树脂固化剂(b)。这种情况下,只要在环氧树脂(a)实际上不固化的温度下能够进行存在环氧树脂固化剂(b)的条件下的混合即可,也可以在更高的温度下进行不存在环氧树脂固化剂(b)的条件下的树脂成分的混合。
[0112]
从抑制环氧树脂(a)的固化的方面考虑,本发明的粘接剂用组合物优选在使用前(制成膜状粘接剂前)在10℃以下的温度条件下保管。
[0113]
[膜状粘接剂]
[0114]
本发明的膜状粘接剂是由本发明的粘接剂用组合物得到的膜状的粘接剂。因此,含有上述的环氧树脂(a)、环氧树脂固化剂(b)、聚氨酯树脂(c)和无机填充材料(d)。另外,聚氨酯树脂(c)在动态粘弹性测定中的25℃的储能模量为8.0mpa以上,上述聚氨酯树脂(c)在环氧树脂(a)和上述聚氨酯树脂(c)的各含量的合计中所占的比例为2.0质量%~50.0质量%。
[0115]
在使用含有有机溶剂的粘接剂用组合物形成本发明的膜状粘接剂的情况下,溶剂通常通过干燥从粘接剂用组合物中除去。因此,本发明的膜状粘接剂中的溶剂的含量为1000ppm(ppm为质量基准)以下,通常为0.1ppm~1000ppm。
[0116]
此处,本发明中,“膜”是指厚度200μm以下的薄膜。形状、大小等没有特别限制,可以根据使用方式适当调整。
[0117]
本发明的膜状粘接剂处于固化前的状态、即b阶段的状态。
[0118]
本发明的膜状粘接剂在施加拉伸力时的应力-应变曲线的拉伸最大应力值为7.0mpa以上。从提高预切割加工性的方面考虑,拉伸最大应力值优选为8.0mpa以上、更优选为9.0mpa以上、进一步优选为10.0mpa以上。上述拉伸最大应力值的上限没有特别限定,优选为30.0mpa以下、更优选为25.0mpa以下、也优选为20.0mpa以下。因此,拉伸最大应力值优选为7.0mpa~30.0mpa、更优选为8.0mpa~25.0mpa、更优选为9.0mpa~25mpa、更优选为10.0mpa~25mpa、进一步优选为10.0mpa~20mpa。
[0119]
除了聚氨酯树脂(c)的储能模量、tg和含量以外,拉伸最大应力值还可以通过无机填充材料(d)的种类、粒径、含量、环氧树脂(a)、环氧树脂固化剂(b)的种类、含量等进行控制。
[0120]
上述拉伸最大应力值可以通过后述实施例中记载的方法来决定。
[0121]
本发明中,固化前的膜状粘接剂是指处于环氧树脂(a)热固化前的状态的膜状粘接剂。具体而言,热固化前的膜状粘接剂是指制备膜状粘接剂后未暴露于25℃以上的温度条件下的膜状粘接剂。另一方面,固化后的膜状粘接剂是指处于环氧树脂(a)已热固化的状态的膜状粘接剂。需要说明的是,上述说明用于明确本发明的粘接剂用组合物的特性,并非将本发明的膜状粘接剂限定为未暴露于25℃以上的温度条件下的膜状粘接剂。
[0122]
本发明的膜状粘接剂可以在半导体制造工序中适当地用作芯片贴装膜。该情况下,本发明的膜状粘接剂的预切割加工性、层压性和切割工序时的切削性优异。
[0123]
从进一步提高层压性的方面考虑,本发明的膜状粘接剂在将膜状粘接剂以5℃/分钟的升温速度从25℃升温时,70℃的熔融粘度优选为50000pa
·
s以下、更优选为40000pa
·
s以下。上述70℃的熔融粘度的下限没有特别限定,优选为100pa
·
s以上、更优选为10000mpa
·
s以上。因此,上述70℃的熔融粘度优选在100pa
·
s~50000pa
·
s的范围内,更
优选在10000pa
·
s~40000pa
·
s的范围内。
[0124]
熔融粘度可以通过后述实施例中记载的方法来决定。
[0125]
除了无机填充材料(d)的含量、以及无机填充材料(d)的种类以外,熔融粘度也可以通过环氧树脂(a)、环氧树脂固化剂(b)和聚氨酯树脂(c)等共存的化合物或者树脂的种类或它们的含量适当地控制。
[0126]
本发明的膜状粘接剂由施加拉伸力时的应力-应变曲线求出的拉伸弹性模量优选为400mpa~3000mpa、更优选为500mpa~2600mpa、进一步优选为500mpa~2000mpa。若拉伸弹性模量在上述范围内,则能够以更高的水平实现优异的预切割性、层压性和切割工序时的切削性。从预切割加工性的方面考虑,拉伸弹性模量优选低,从切割工序时的切削性的方面出发,拉伸弹性模量优选高。
[0127]
上述拉伸弹性模量可以通过后述实施例中记载的方法来决定。
[0128]
本发明的膜状粘接剂的厚度优选为1μm~60μm、更优选为1μm~20μm。厚度也能够为3μm~30μm,也能够为5μm~20μm。从能够进一步发挥出本发明的效果,即,即便将膜状粘接剂制成薄膜,预切割加工性、层压性和切割工序时的切削性也优异的方面考虑,膜状粘接剂的厚度优选为5μm~15μm。
[0129]
膜状粘接剂的厚度可以通过接触/线性测量计方式(台式接触式厚度测量装置)进行测定。
[0130]
关于本发明的膜状粘接剂,可以制备本发明的粘接剂用组合物(清漆),将该组合物涂布至经脱模处理的基材膜上,根据需要使其干燥而形成。粘接剂用组合物通常含有有机溶剂。
[0131]
作为经脱模处理的基材膜,只要作为所得到的膜状粘接剂的覆盖膜发挥功能即可,可以适当采用公知的基材膜。可以举出例如经脱模处理的聚丙烯(pp)、经脱模处理的聚乙烯(pe)、经脱模处理的聚对苯二甲酸乙二醇酯(pet)。
[0132]
作为涂布方法,可以适当采用公知的方法,可以举出例如使用辊式刮刀涂布机、凹版涂布机、模涂机、反向涂布机等的方法。
[0133]
关于干燥,只要能够在不使环氧树脂(a)固化的情况下从粘接剂用组合物中去除有机溶剂而制成膜状粘接剂即可,例如可以通过在80℃~150℃的温度保持1分钟~20分钟来进行。
[0134]
本发明的膜状粘接剂可以由本发明的膜状粘接剂单独构成,也可以为将上述经脱模处理的基材膜贴合到膜状粘接剂的至少一个面而成的方式。进而,也可以与切晶膜作为一体形成切晶/芯片贴装膜的方式。另外,本发明的膜状粘接剂可以为将膜切割成适当尺寸的方式,也可以为将膜卷成卷状而成的方式。
[0135]
本发明的膜状粘接剂优选至少一个表面(即,与被粘接体贴合的至少一个面)的算术平均粗糙度ra为3.0μm以下,更优选与被粘接体贴合的任一侧的表面的算术平均粗糙度ra均为3.0μm以下。
[0136]
上述算术平均粗糙度ra更优选为2.0μm以下、进一步优选为1.5μm以下。下限值没有特别限制,实际为0.1μm以上。
[0137]
从抑制环氧树脂(a)的固化的方面考虑,本发明的膜状粘接剂优选在使用前(固化前)在10℃以下的温度条件下保管。
[0138]
[半导体封装及其制造方法]
[0139]
下面,参照附图对本发明的半导体封装及其制造方法的优选实施方式进行详细说明。需要说明的是,在下述说明和附图中,对相同或相当的要素标注相同的符号,以省略重复的说明。图1~图7是示出本发明的半导体封装的制造方法的各工序的一个优选实施方式的示意性纵截面图。
[0140]
本发明的半导体封装的制造方法中,首先,作为第1工序,如图1所示,在表面形成有至少1个半导体电路的半导体晶片1的背面(即,半导体晶片1的未形成半导体电路的面)热压接本发明的膜状粘接剂2(芯片贴装膜2)而设置粘接剂层(膜状粘接剂2),接着,隔着该粘接剂层(膜状粘接剂2)设置切晶膜3(切晶带3)。图1中,将膜状粘接剂2表示为比切晶膜3小,但两膜的大小(面积)根据目的适当设定。关于热压接的条件,在环氧树脂(a)实际上不发生热固化的温度下进行。例如,可以举出70℃左右、压力0.3mpa左右的条件。
[0141]
作为半导体晶片1,可以适当使用在表面形成有至少1个半导体电路的半导体晶片,可以举出例如硅晶片、sic晶片、gaas晶片、gan晶片。为了将本发明的膜状粘接剂(芯片贴装膜)设置于半导体晶片1的背面,例如可以适当使用辊式层压机、手动层压机之类的公知的装置。
[0142]
上文中,分别贴附芯片贴装膜和切晶膜,但在本发明的膜状粘接剂为切晶/芯片贴装膜的方式的情况下,可以一体地贴附膜状粘接剂和切晶膜。
[0143]
接着,作为第2工序,如图2所示,通过一体地切割半导体晶片1和粘接剂层(芯片贴装膜2),由此在切晶膜3上得到具备半导体晶片被单片化的半导体芯片4和膜状粘接剂2被单片化的膜状粘接剂片2的带粘接剂层的半导体芯片5。切割装置没有特别限制,可以适当使用通常的切割装置。
[0144]
接着,作为第3工序,根据需要将切晶膜利用能量射线固化,降低粘合力,通过拾取从切晶膜3剥离带粘接剂层的半导体芯片5。接着,如图3所示,隔着膜状粘接剂片2将带粘接剂层的半导体芯片5与配线基板6热压接,在配线基板6安装带粘接剂层的半导体芯片5。作为配线基板6,可以适当使用在表面形成有半导体电路的基板,可以举出例如印刷电路基板(pcb)、各种引线框架、和在基板表面搭载有电阻元件或电容器等电子部件的基板。
[0145]
作为将带粘接剂层的半导体芯片5安装至这种配线基板6的方法,没有特别限制,可以适当采用现有的利用热压接的安装方法。
[0146]
接着,作为第4工序,使膜状粘接剂片2热固化。作为热固化的温度,只要为膜状粘接剂片2的热固化起始温度以上就没有特别限制,根据所使用的环氧树脂(a)、聚氨酯树脂(c)和环氧固化剂(b)的种类适当调整。例如优选为100℃~180℃,从以更短时间使其固化的方面考虑,更优选为140℃~180℃。若温度过高,则在固化过程中膜状粘接剂片2中的成分有容易挥发而发泡的倾向。该热固化处理的时间可以根据加热温度适当设定,例如可以设为10分钟~120分钟。
[0147]
本发明的半导体封装的制造方法中,如图4所示,优选经由键合引线7连接配线基板6和带粘接剂层的半导体芯片5。作为这样的连接方法没有特别限制,可以适当采用现有公知的方法,例如引线键合方式的方法、tab(tape automated bonding,卷带式自动接合)方式的方法等。
[0148]
另外,也可以通过在搭载后的半导体芯片4的表面将另一半导体芯片4热压接、热
固化,并再次利用引线键合方式与配线基板6连接,从而层积2个以上。例如,有如图5所示那样使半导体芯片错开而层积的方法;或者如图6所示那样通过使第2层之后的膜状粘接剂片2变厚而一边埋入键合引线7一边层积的方法;等等。
[0149]
本发明的半导体封装的制造方法中,优选如图7所示通过封装树脂8将配线基板6与带粘接剂层的半导体芯片5封装,如此能够得到半导体封装9。作为封装树脂8没有特别限制,可以适当使用能够用于半导体封装的制造的公知的封装树脂。另外,作为利用封装树脂8的封装方法,也没有特别限制,可以采用通常进行的方法。
[0150]
本发明的半导体封装通过上述半导体封装的制造方法制造,半导体芯片与配线基板、或半导体芯片之间的至少一处通过本发明的膜状粘接剂的热固化体粘接。
[0151]
实施例
[0152]
以下,基于实施例和比较例来更具体地说明本发明,但本发明不限于下述实施例。另外,室温是指25℃,mek为甲基乙基酮,ipa为异丙醇,pet为聚对苯二甲酸乙二醇酯。除非另行说明,否则“%”、“份”是质量基准。
[0153]
[实施例1]
[0154]
将甲酚酚醛清漆型环氧树脂(商品名:e0cn-104s、重均分子量:5000、软化点:92℃、固体、环氧当量:218g/eq、日本化药株式会社制造)56质量份、双酚a型环氧树脂(商品名:yd-128、重均分子量:400、软化点:25℃以下、液体、环氧当量:190g/eq、新日化环氧制造株式会社制造)49质量份和聚氨酯树脂溶液(商品名:dynaleo va-9320m、聚氨酯树脂的重均分子量:120000、tg:39℃、25℃的储能模量:594mpa、溶剂:mek/ipa混合溶剂、toyochem株式会社制造)120质量份(以聚氨酯树脂计为30质量份)在1000ml的可拆式烧瓶中于温度110℃加热搅拌2小时,得到树脂清漆。
[0155]
接着,将全部量的该树脂清漆(225质量份)移至800ml的行星式混合机中,添加氧化铝填料(商品名:ao-502、平均粒径(d50):0.6μm、株式会社admatechs制造)196质量份,加入咪唑型固化剂(商品名:2phz-pw、四国化成株式会社制造)2.0质量份、硅烷偶联剂(商品名:s-510、jnc株式会社制)3.0质量份,在室温下搅拌混合1小时后,进行真空脱泡,得到混合清漆(粘接剂用组合物)。
[0156]
接着,利用多功能涂布机(头部:刮刀涂布剂、型号:mpc-400l、株式会社松冈机械制作所制造)在下述条件下将所得到的混合清漆涂布到厚度38μm的经脱模处理的pet膜(剥离膜)上并进行干燥,制作宽300mm、长10m、厚5μm的膜状粘接剂层形成于剥离膜上的2层层积膜(带剥离膜的膜状粘接剂)。
[0157]
涂布、干燥条件
[0158]
干燥处理温度:130℃(干燥炉1.5m)
[0159]
线速度:1.0m/分钟(干燥炉滞留时间1.5分钟)
[0160]
上述干燥后环氧树脂未固化,这对于下述各实施例和比较例也同样。
[0161]
[实施例2]
[0162]
作为聚氨酯树脂使用聚氨酯树脂溶液(商品名:dynaleo va-9310mf、重均分子量:110000、tg:27℃、25℃的储能模量:289mpa、溶剂:mek/ipa混合溶剂、toyochem株式会社制造)120质量份(以聚氨酯树脂计为30质量份),除此以外与实施例1同样地得到粘接剂用组合物和2层层积膜。
[0163]
[实施例3]
[0164]
作为聚氨酯树脂使用聚氨酯树脂溶液(商品名:dynaleo va-9303mf、重均分子量:105000、tg:4℃、25℃的储能模量:100mpa、溶剂:mek/ipa混合溶剂、toyochem株式会社制造)120质量份(以聚氨酯树脂计为30质量份),除此以外与实施例1同样地得到粘接剂用组合物和2层层积膜。
[0165]
[实施例4]
[0166]
作为聚氨酯树脂使用聚氨酯树脂溶液(商品名:dynaleo va-9302mf、重均分子量:95000、tg:-5℃、25℃的储能模量:8.7mpa、溶剂:mek/ipa混合溶剂、toyochem株式会社制造)120质量份(以聚氨酯树脂计为30质量份),除此以外与实施例1同样地得到粘接剂用组合物和2层层积膜。
[0167]
[实施例5]
[0168]
使聚氨酯树脂溶液的混配量为240质量份(以聚氨酯树脂计为60质量份),使氧化铝填料的混配量为238质量份,除此以外与实施例2同样地得到粘接剂用组合物和2层层积膜。
[0169]
[实施例6]
[0170]
使聚氨酯树脂溶液的混配量为360质量份(以聚氨酯树脂计为90质量份),使氧化铝填料的混配量为281质量份,除此以外与实施例2同样地得到粘接剂用组合物和2层层积膜。
[0171]
[实施例7]
[0172]
使聚氨酯树脂溶液的混配量为40质量份(以聚氨酯树脂计为10质量份),使氧化铝填料的混配量为168质量份,除此以外与实施例2同样地得到粘接剂用组合物和2层层积膜。
[0173]
[实施例8]
[0174]
使氧化铝填料的混配量为305质量份,除此以外与实施例2同样地得到粘接剂用组合物和2层层积膜。
[0175]
[实施例9]
[0176]
使氧化铝填料的混配量为375质量份,除此以外与实施例2同样地得到粘接剂用组合物和2层层积膜。
[0177]
[实施例10]
[0178]
代替氧化铝填料而使用银填料(商品名:ag-4-8f、平均粒径(d50):2.0μm、dowa electronics株式会社制造)522质量份,除此以外与实施例2同样地得到粘接剂用组合物和2层层积膜。
[0179]
[实施例11]
[0180]
代替氧化铝填料而使用二氧化硅填料(商品名:so-25r、平均粒径(d50):0.5μm、株式会社admatechs制造)209质量份,除此以外与实施例2同样地得到粘接剂用组合物和2层层积膜。
[0181]
[比较例1]
[0182]
作为聚氨酯树脂使用聚氨酯树脂(商品名:t-8175n、重均分子量:80000、tg:-23℃、25℃的储能模量:3.4mpa、dic covestro polymer株式会社制造)30质量份,进而混配环己酮90质量份,除此以外与实施例1同样地得到粘接剂用组合物和2层层积膜。
[0183]
[比较例2]
[0184]
代替聚氨酯树脂而混配丙烯酸类树脂(商品名:sg-280ek23、重均分子量:800000、tg:-29℃、25℃的储能模量:6.5mpa、nagase chemtex株式会社制造)30质量份,进而混配环己酮90质量份,除此以外与实施例1同样地得到粘接剂用组合物和2层层积膜。
[0185]
[比较例3]
[0186]
代替聚氨酯树脂而混配双酚a型苯氧基树脂(商品名:yp-50、重均分子量:70000、tg:85℃、25℃的储能模量1700mpa、新日化环氧制造株式会社制造)30质量份,进而混配mek90质量份,除此以外与实施例1同样地得到粘接剂用组合物和2层层积膜。
[0187]
[比较例4]
[0188]
使聚氨酯树脂溶液的混配量为520质量份(以聚氨酯树脂计为130质量份),使氧化铝填料的混配量为337质量份,除此以外与实施例2同样地得到粘接剂用组合物和2层层积膜。
[0189]
[比较例5]
[0190]
使聚氨酯树脂溶液的混配量为8质量份(以聚氨酯树脂计为2质量份),使氧化铝填料的混配量为157质量份,除此以外与实施例2同样地得到粘接剂用组合物和2层层积膜。
[0191]
将各实施例和比较例中制成的膜状粘接剂的组成示于表1和表2。空栏是指不含有该成分。
[0192]
表1和表2中所示的“无机填充材料含量”表示无机填充材料在环氧树脂、环氧树脂固化剂、聚合物、硅烷偶联剂和无机填充材料的各含量的合计中所占的比例(体积%)。
[0193]
[试验例]
[0194]
《储能模量和玻璃化转变温度的测定》
[0195]
分别准备各实施例和比较例中使用的聚氨酯树脂、丙烯酸类树脂和苯氧基树脂的溶液。直接使用以溶液状态获得的树脂。对于固体状态的树脂,使用对应的实施例或比较例中记载的溶剂制成溶液。将各溶液涂布到厚度38μm的经脱模处理的pet膜(剥离膜)上,在130℃通过10分钟的加热进行干燥,得到长300mm、宽200mm、厚30μm的树脂膜形成于剥离膜上的2层层积膜。将所得到的树脂膜切成5mm
×
17mm的大小,将剥离膜剥离,使用动态粘弹性测定装置(商品名:rheogel-e4000f、株式会社ubm制造)在测定温度范围20℃~300℃、升温速度5℃/分钟和频率1hz的条件下进行测定,测定各温度的储能模量和tanδ。由这些值读取25℃的储能模量,另外,将tanδ峰顶温度(tanδ显示出极大的温度)作为玻璃化转变温度(tg)。测定值与聚合物名称一起示于表中。
[0196]
《拉伸最大应力值和拉伸弹性模量的测定》
[0197]
由各实施例和比较例中得到的带剥离膜的膜状粘接剂切割出20mm
×
50mm大小的长方形,在剥离了剥离膜的状态下层积切割出的膜状粘接剂。在载台70℃的热板上利用手压辊贴合该层积物,得到厚度为40μm的试验片。对于该试验片,使用拉伸试验机(rtf2430、株式会社a&d公司制造),在温度范围25℃、湿度60%的环境下,以夹具间距离14mm、拉伸速度500mm/分钟进行拉伸,测定应变相对于试验力的变化(位移)。将试验力除以试验片的截面积,计算出拉伸应力。由所得到的应力-应变曲线,在下述分析条件下计算出拉伸最大应力值和拉伸弹性模量。
[0198]
拉伸最大应力值(mpa):所得到的应力-应变曲线中的最大拉伸应力值
[0199]
拉伸弹性模量值(mpa):所得到的应力-应变曲线上的作为与试验力(应力)3n对应的点和与试验力7n对应的点间的斜率而算出的弹性模量值
[0200]
《固化前熔融粘度的测定》
[0201]
由各实施例和比较例中得到的带剥离膜的膜状粘接剂切割出长5.0cm
×
宽5.0cm大小的正方形,在剥离了剥离膜的状态下层积切割出的膜状粘接剂。在70℃的载台上利用手压辊贴合该层积物,得到厚度为约1.0mm的试验片。对于该试验片,使用流变仪(rs6000、haake公司制造),测定温度范围20℃~250℃、升温速度5℃/分钟条件下的粘性阻力的变化。由所得到的温度-粘性阻力曲线分别计算出固化前的膜状粘接剂在70℃的熔融粘度(pa
·
s)。
[0202]
《预切割加工性》
[0203]
对于各实施例和比较例中得到的带剥离膜的膜状粘接剂的膜状粘接剂(芯片贴装膜),以在长度方向上隔开间隔(58.6mm)且在全长(10m)反复形成能够覆盖半导体晶片背面的圆形(直径:220mm)的方式切出切口。将圆形部分残留在剥离膜上,同时将圆形部分外侧的膜状粘接剂的不需要部分用膜卷取机(ms3-600a-t、有限会社yutaka制作所制造)以16n的张力改变卷取速度进行卷取。根据在各卷取速度下发生断裂的卷取长度,按照下述基准评价预切割加工性。卷取长度是将开始卷取的时刻作为0m,通过卷取辊的旋转长度求出。卷取速度快时,为更容易断裂的条件。
[0204]
‑‑
评价基准
‑‑
[0205]
aa:在卷取速度5m/分钟条件下卷取时,膜状粘接剂不断裂。
[0206]
a:在卷取速度5m/分钟条件下卷取时,膜状粘接剂断裂,但在卷取速度2m/分钟条件下卷取时,膜状粘接剂不断裂。
[0207]
b:在卷取速度2m/分钟条件下卷取时,在卷取长度1m的时刻不发生断裂,在之后的卷取过程中断裂。
[0208]
c:在卷取速度2m/分钟条件下卷取时,在卷取长度小于1m时断裂。
[0209]
《晶片层压性评价》
[0210]
对于各实施例和比较例中得到的带剥离膜的膜状粘接剂,利用手动层压机(商品名:fm-114、technovision公司制造)在温度70℃、压力0.1mpa或0.3mpa下粘接至假片硅晶片(8英寸大小、厚度50μm)的一个面上。目视观察粘接面,根据下述基准评价晶片层压性。层压压力越低则为越容易形成空隙的层压条件。
[0211]
‑‑
评价基准
‑‑
[0212]
aa:在层压压力0.1mpa条件下层压而成的半导体晶片中,未观察到空隙。
[0213]
a:在层压压力0.1mpa条件下层压而成的半导体晶片中,观察到1个以上空隙,但在层压压力0.3mpa条件下未观察到空隙。
[0214]
b:在层压压力0.3mpa条件下层压而成的半导体晶片中,观察到1个以上4个以下空隙。
[0215]
c:在层压压力0.3mpa条件下层压而成的半导体晶片中,观察到5个以上空隙。
[0216]
《切割切削性评价》
[0217]
对于各实施例和比较例中得到的带剥离膜的膜状粘接剂,首先,利用手动层压机(商品名:fm-114、technovision公司制造)在温度70℃、压力0.3mpa下粘接至假片硅晶片(8
英寸大小、厚度50μm)的一个面上。之后,将剥离膜从膜状粘接剂剥离后,利用同样的手动层压机在室温、压力0.3mpa下使切晶膜(商品名:k-13、古河电气工业株式会社制造)和切割框(商品名:dtf2-8-1h001、disco公司制造)粘接至膜状粘接剂的与上述假片硅晶片相反侧的面上。接着,使用设置有双轴划片刀(z1:nbc-zh2050(27hedd)、disco公司制造、z2:nbc-zh127f-se(bc)、disco公司制造)的切割装置(商品名:dfd-6340、disco公司制造),在转速40000rpm(z1和z2均如此)、高度(从裁断时的载台表面至切割刀片端部的最短距离)125μm(z1)、70μm(z2)的条件下,改变切割速度,按照形成尺寸5mm
×
5mm的方式从假片硅晶片侧实施切割,得到带膜状粘接剂的假片芯片。从侧面利用立体显微镜观察所得到的带膜状粘接剂的假片芯片,按照下述基准对切割切削性进行评价。在各切割速度下,随机观察5个带膜状粘接剂的假片芯片。切割速度越快,则切割时越产生热,越容易产生切削屑。
[0218]
‑‑
评价基准
‑‑
[0219]
aa:在切割速度50mm/秒条件下切割得到的5个带膜状粘接剂的假片芯片中,所有带膜状粘接剂的假片芯片未观察到切削屑。
[0220]
a:在切割速度50mm/秒条件下切割得到的5个带膜状粘接剂的假片芯片中,观察到切削屑的带膜状粘接剂的假片芯片为1个以上,在切割速度20mm/秒条件下切割得到的5个带膜状粘接剂的假片芯片中,所有带膜状粘接剂的假片芯片未观察到切削屑。
[0221]
b:在切割速度20mm/秒条件下切割得到的5个带膜状粘接剂的假片芯片中,观察到切削屑的带膜状粘接剂的假片芯片为1个以上3个以下。
[0222]
c:在切割速度20mm/秒条件下切割得到的5个带膜状粘接剂的假片芯片中,观察到切削屑的带膜状粘接剂的假片芯片为4个以上。
[0223]
将上述各试验结果示于下表。
[0224]
[0225][0226]
如上述表1和表2所示,若膜状粘接剂中使用的聚氨酯树脂在25℃的储能模量低于本发明中规定的储能模量,结果在切割时容易产生切削屑(比较例1)。
[0227]
对适用聚氨酯树脂以外的树脂作为与环氧树脂组合的树脂的情况进行观察时,若使用丙烯酸类树脂,则无法满足本发明中规定的拉伸最大应力值,结果预切割加工性、晶片层压性和切割切削性均差(比较例2)。另一方面,即便在使用苯氧基树脂代替聚氨酯树脂的情况下,也无法满足本发明中规定的拉伸最大应力值,进而得到预切割加工性差的结果(比较例3)。
[0228]
另外,即便在使用本发明中规定的聚氨酯树脂的情况下,若含量多于本发明中规定的量,则也得到在贴附时产生空隙的结果(比较例4)。相反,若聚氨酯树脂的含量少于本发明中规定的量,则无法满足本发明中规定的拉伸最大应力值,进而得到预切割加工性差的结果(比较例5)。
[0229]
与此相对,本发明中规定的成分组成的膜状粘接剂均能够在预切割加工时确实地卷取不需要部分,在贴附时不易产生空隙,在切削加工中不易产生切削屑(实施例1~11)。
[0230]
结合其实施方式对本发明进行了说明,但本技术人认为,只要没有特别指定,则本发明在说明的任何细节均不被限定,应当在不违反所附权利要求书所示的发明精神和范围的情况下进行宽泛的解释。
[0231]
本技术要求基于2021年12月27日在日本进行专利提交的日本特愿2021-213386的
优先权,将其参照于此并将其内容作为本说明书记载内容的一部分引入。
[0232]
符号说明
[0233]
1半导体晶片
[0234]
2粘接剂层(膜状粘接剂)
[0235]
3切晶膜(切晶带)
[0236]
4半导体芯片
[0237]
5带膜状粘接剂片的半导体芯片
[0238]
6配线基板
[0239]
7键合引线
[0240]
8封装树脂
[0241]
9半导体封装
技术特征:
1.一种粘接剂用组合物,其为含有环氧树脂(a)、环氧树脂固化剂(b)、聚氨酯树脂(c)和无机填充材料(d)的粘接剂用组合物,其中,所述聚氨酯树脂(c)在动态粘弹性测定中的25℃的储能模量为8.0mpa以上,所述聚氨酯树脂(c)在所述环氧树脂(a)和所述聚氨酯树脂(c)的各含量的合计中所占的比例为2.0质量%~50.0质量%,对使用所述粘接剂用组合物形成的膜状粘接剂施加拉伸力时的应力-应变曲线的拉伸最大应力值为7.0mpa以上。2.如权利要求1所述的粘接剂用组合物,其中,将使用所述粘接剂用组合物形成的膜状粘接剂以5℃/分钟的升温速度从25℃升温时,70℃的熔融粘度为50000pa
·
s以下。3.一种膜状粘接剂,其由权利要求1或2所述的粘接剂用组合物获得。4.如权利要求3所述的膜状粘接剂,其厚度为1μm~20μm。5.一种半导体封装的制造方法,其包括下述工序:第1工序,将权利要求3或4所述的膜状粘接剂热压接到表面形成有至少1个半导体电路的半导体晶片的背面而设置粘接剂层,隔着所述粘接剂层设置切晶膜;第2工序,一体地切割所述半导体晶片和所述粘接剂层,由此在切晶膜上得到具备膜状粘接剂片和半导体芯片的带粘接剂层的半导体芯片;第3工序,从所述切晶膜剥离所述带粘接剂层的半导体芯片,隔着所述粘接剂层对所述带粘接剂层的半导体芯片和配线基板进行热压接;和第4工序,将所述粘接剂层热固化。6.一种半导体封装,其中,半导体芯片与配线基板或半导体芯片间是通过权利要求3或4所述的膜状粘接剂的热固化体而粘接的。
技术总结
一种粘接剂用组合物、使用了该粘接剂用组合物的膜状粘接剂、半导体封装及其制造方法,上述粘接剂用组合物为含有环氧树脂(A)、环氧树脂固化剂(B)、聚氨酯树脂(C)和无机填充材料(D)的粘接剂用组合物,其中,上述聚氨酯树脂(C)在动态粘弹性测定中的25℃的储能模量为8.0MPa以上,上述聚氨酯树脂(C)在上述环氧树脂(A)和上述聚氨酯树脂(C)的各含量的合计中所占的比例为2.0质量%~50.0质量%,对使用上述粘接剂用组合物形成的膜状粘接剂施加拉伸力时的应力-应变曲线的拉伸最大应力值为7.0MPa以上。7.0MPa以上。7.0MPa以上。
技术研发人员:森田稔 梶原知人 大谷洋多 丸山弘光
受保护的技术使用者:古河电气工业株式会社
技术研发日:2022.11.29
技术公布日:2023/8/31
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/
上一篇:一种超声波玉石雕刻机 下一篇:一种用于光模块测试的水冷系统的制作方法