一种钕铁硼永磁材料的制备方法
未命名
09-08
阅读:110
评论:0

1.本发明涉及永磁材料技术领域,尤其涉及一种钕铁硼永磁材料的制备方法。
背景技术:
2.钕铁硼永磁材料是目前磁能积最高的永磁材料,被称为“永磁王”,其最常规的制备方法是烧结或热变形。其中,烧结法制备的钕铁硼具有很高的磁能积,接近磁体的理论值,但是其不满足实际应用过程中需要的较高矫顽力。而热变形获得的钕铁硼磁体可以获得较细小的晶粒尺寸,因而有利于提高钕铁硼磁体的矫顽力。但是,传统的热变形钕铁硼磁体都是采用的较高的温度和较慢的变形下压速度,且是在没有束缚的条件下进行。由于钕铁硼材料是脆性材料,只有高温慢速才能保证磁体的成型性。然而,高温慢速会导致晶粒尺寸的长大,从而会降低矫顽力。要获得细小的晶粒尺寸,需要热变形在较低的温度下发生。因此,如何提高钕铁硼永磁材料在低温热变形过程中的成型性是目前噬待解决的问题。
技术实现要素:
3.针对上述技术问题,本发明提供一种钕铁硼永磁材料的制备方法。
4.为实现上述目的,本发明采取的技术方案为:
5.本发明提供一种钕铁硼永磁材料的制备方法,包括以下步骤:
6.步骤1:制备母合金;
7.步骤2:将步骤1中的母合金破碎成块,然后再通过熔体快淬方法制备条带;
8.步骤3:将步骤2得到的条带通过研磨得到粉体;
9.步骤4:将步骤3得到的粉体冷压成块;
10.步骤5:将步骤4中冷压成块得到的块体进行热变形;
11.其中,所述热变形采用的模具包括外模和内模,所述外模由不锈钢制成,所述内模由石墨制成;所述外模和所述内模皆为两端开口的中空圆柱形,所述外模套设于所述内模的外侧且与所述内模同轴。
12.在本发明的技术方案中,所述内模的中空部分用于容置步骤3得到的冷压块体。
13.作为优选地实施方式,所述外模的厚度为0.5~10mm;
14.优选地,所述内模的厚度为0.5~1mm。
15.作为优选地实施方式,所述钕铁硼永磁材料的化学组成包括nd
x
fe
ybz
,其中,x、y、z为原子百分比;
16.优选地,x为11.8~15at%;y为78~84.2at%;z为4~7at%;
17.优选地,还包括添加元素;所述添加元素选自nb、zr、ti、cu、ga和al中的至少一种;
18.优选地,所述添加元素中,单种元素的添加量按照原子的百分比记不超过1at%。
19.作为优选地实施方式,步骤1中,所述制备母合金常采用真空熔炼法。
20.作为优选地实施方式,步骤2中,所述熔体快淬中的快淬速度为27~32m/s;
21.优选地,步骤2中,所述熔体快淬熔体快淬中的甩带温度为1250~1350℃。在本发
明的技术方案中,步骤2中,所述条带为非晶结构条带、纳米晶结构条带或非晶和纳米晶混合结构条带;
22.优选地,所述条带的厚度为10~40μm,宽度长度不限。
23.作为优选地实施方式,步骤3中,所述研磨的方式没有特别限制,可以为手动研磨或球磨;为了不破坏步骤2得到的条带结构,优选为手动研磨;在本发明的技术方案中,所述研磨为研磨至所述条带的粒径≤200目。
24.作为优选地实施方式,步骤4中,所述冷压成块的致密度≥80%;
25.在某些具体的实施方式中,采用冷压模具对上述粉体进行冷压成块时,模具的内孔直径可选3~10mm,冷压得到的块体厚度一般不超过3mm,压制温度既可以选择常温,亦可以选择在一定的温度下压,可以在空气中压亦可以在氩气气氛中压。
26.作为优选地实施方式,步骤5中,所述热变形的变形量为75%~85%;在本发明的技术方案中,所述变形量指热变形模具高度减小的百分量;
27.优选地,所述热变形的温度为600~760℃;
28.优选地,所述热变形的时间为1~5min。
29.又一方面,本发明提供上述制备方法得到的钕铁硼永磁材料。
30.上述技术方案具有如下优点或者有益效果:本发明提供的制备方法能够在在较低的变形温度下得到具有良好成型性的热变形钕铁硼材料。本发明提供的制备方法首先通过熔体快淬制备磁性金属薄带,然后将薄带破碎成粉,冷压成致密的块体后,利用双层结构的热变形模具对其进行强力束缚变形,通过控制变形力的大小实现变形量的控制,本发明提供的制备方法能够对钕铁硼进行较低温度(≤760℃)下的热变形。该方法对于对于获得较小晶粒尺寸的热变形钕铁硼磁体、提高该类磁体的矫顽力至关重要。本发明提供的制备方法操作简单,易于实现,适于工业生产。
附图说明
31.图1是本发明实施例1步骤1中熔体快淬的过程示意图。
32.图2是本发明实施例1中步骤2的的研磨过程示意图。
33.图3是本发明实施例1中步骤3中的冷压成块的过程示意图。
34.图4是本发明实施例1中的热变形模具以及使用该模具进行强束缚变形的过程示意图。
35.图5是本发明实施例1中制备的钕铁硼永磁材料的实物图。
36.图6是本发明实施例1中的钕铁硼永磁材料的xrd图谱。
37.图7是本发明实施例1中的钕铁硼永磁材料的易磁化和难磁化方向的磁滞回线。
具体实施方式
38.下述实施例仅仅是本发明的一部分实施例,而不是全部的实施例。因此,以下提供的本发明实施例中的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
39.在本发明中,若非特指,所有的设备和原料等均可从市场购得或是本行业常用的。
下述实施例中的方法,如无特别说明,均为本领域的常规方法。
40.实施例1:
41.本实施例中的钕铁硼材料的制备方法如下:
42.步骤1:采用真空熔炼获得母合金,合金成分为nd
13.5
fe
80.5
b6;
43.步骤2:将母合金破碎成块,然后采用熔体快淬方法将合金制成条带,如图1所示,具体操作为:将母合金破碎后的合金块1置入下端带有小孔的石英管5中,在高频铜线圈2的加热下合金块1融化成合金液6,在有压力差的氩气4的作用下将合金液6吹到快速转动的铜辊3上,即可甩出合金条带7,其中,铜辊3的转速为28m/s,石英管5的口径为0.7mm,石英管5的下管口到铜辊3的距离为3mm,所制备得到的合金条带7厚度约为13μm,宽度约为1.5~1.6mm,结构为非晶结构;
44.步骤3:如图2所示,将步骤2得到的合金条带7置入玛瑙研钵8中进行手动研磨,研磨得到磁粉9,研磨得到的磁粉粒度为200目以下;
45.步骤4:如图3所示,将步骤3得到的磁粉9冷压成块,具体为将步骤3得到的磁粉9置入冷压模具10中,冷压模具10内孔的直径为5mm,在模具内孔的底部放置一个压杆小柱11,模具的底部放置一个垫片12,再将其放到硬质合金下压头13上,装入压杆15,在压杆15的顶端放置硬质合金上压头14,上/下硬质合金压头13和14共同加压,进行压块,压出得到的块体16厚度为1~2mm,致密度为80%;
46.步骤5:如图4所示,将步骤4得到的冷压块体16放入热变形模具19中;其中,热变形模具19包括石墨制成的内模17和套设在内模17外侧的不锈钢外模18;外模18和内模17皆为两端开口的中空圆柱形,且同轴;内模17的内径为5mm(与步骤4得到的冷压块体的尺寸一致),外径为6mm;外模18的内径为6mm,外径为9mm,热变形模具19高8mm;内模17和外模18无缝接触;而后将容纳块体的热变形模具19在变形设备上进行变形,变形压头20和变形压头21分别产生相对的挤压力,变形温度750℃,变形时间为2.5min,变形量为80%。
47.本实施例中,经过上述热变形后得到的钕铁硼材料的实物照片如图5所示,其具体操作为:采用线切割切掉样品四周的不锈钢模具后,样品由于石墨内模的分隔作用,中间的样品可以完整取出,没有裂纹和分层现象。
48.本实施例中,对上述步骤中得到的钕铁硼磁体进行了一系列表征,制备的材料具有较强的钕铁硼磁体的织构,从得到的材料的的xrd图谱上看(图6),该磁体具有非常强的(00l)择优取向,因而具有很大的磁各向异性。本实施例中,采用标准测量仪器(振动样品磁强计)测试的磁滞回线表征了钕铁硼永磁材料的磁性能,结果如图7所示。横坐标为磁场强度,纵坐标为磁化强度,磁滞回线上重要的磁参数分别为ms点(磁场最大时的磁化强度),剩磁(磁场降为0时剩余的磁化强度)、矫顽力(磁化强度降为0时的磁场强度),最大磁能积(磁感应强度与磁场强度乘积的最大值,磁感应强度等于磁场强度+磁化强度*4π)。从图7中可以看出:本实施例制备的钕铁硼永磁材料具有良好的磁特性,磁能积为48mgoe(图7)。
49.对比例1
50.本对比例采用与实施例1相同的方法制备钕铁硼材料,不同之处在于,本对比例在步骤5中采用的热变形模具没有设置内模,其为不锈钢制成的中空圆柱形模具,内径为6mm,外径为9mm。
51.本对比例制备的钕铁硼材料经过热变形,用线切割切开后,用线切割切开之后,中
间的样品与不锈钢模具粘连。由不锈钢模具带来的应力传到样品中,导致样品存在分层和裂纹贯穿等现象的存在,不能切出成块样品,只能切出薄片状细渣。
52.以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
技术特征:
1.一种钕铁硼永磁材料的制备方法,其特征在于,包括以下步骤:步骤1:制备母合金;步骤2:将步骤1中的母合金破碎成块,然后再通过熔体快淬方法制备条带;步骤3:将步骤2得到的条带通过研磨得到粉体;步骤4:将步骤3得到的粉体冷压成块;步骤5:将步骤4中冷压成块得到的块体进行热变形;其中,所述热变形采用的模具包括外模和内模,所述外模由不锈钢制成,所述内模由石墨制成;所述外模和所述内模皆为两端开口的中空圆柱形,所述外模套设于所述内模的外侧且与所述内模同轴。2.根据权利要求1所述的制备方法,其特征在于,所述外模的厚度为0.5~10mm;优选地,所述内模的厚度为0.5~1mm。3.根据权利要求1所述的制备方法,其特征在于,所述钕铁硼永磁材料的化学组成包括nd
x
fe
y
b
z
,其中,x、y、z为原子百分比;优选地,x为11.8~15at%;y为78~84.2at%;z为4~7at%;优选地,还包括添加元素;所述添加元素选自nb、zr、ti、cu、ga和al中的至少一种;优选地,所述添加元素中,单种元素的添加量按照原子的百分比记不超过1at%。4.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述制备母合金常采用真空熔炼法。5.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述熔体快淬中的快淬速度为27~32m/s;优选地,步骤2中,所述熔体快淬熔体快淬中的甩带温度为1250~1350℃。6.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述条带为非晶结构条带、纳米晶结构条带或非晶和纳米晶混合结构条带;优选地,所述条带的厚度为10~40μm。7.根据权利要求1所述的制备方法,其特征在于,步骤3中,所述研磨为研磨至所述条带的粒径≤200目。8.根据权利要求1所述的制备方法,其特征在于,步骤4中,所述冷压成块的致密度≥80%。9.根据权利要求1所述的制备方法,其特征在于,步骤5中,所述热变形的变形量为75%~85%;优选地,所述热变形的温度为600~760℃;优选地,所述热变形的时间为1~5min。10.权利要求1-9任一所述的制备方法得到的钕铁硼永磁材料。
技术总结
本发明公开了一种钕铁硼永磁材料的制备方法,包括以下步骤:制备母合金;将母合金破碎成块,然后再通过熔体快淬方法制备条带;将条带通过研磨得到粉体;将得到的粉体冷压成块;将冷压成块得到的块体进行热变形,其中,热变形采用的模具包括外模和内模,外模由不锈钢制成,内模由石墨制成;外模和内模皆为两端开口的中空圆柱形,外模套设于内模的外侧且与内模同轴。本发明提供的制备方法能够在在较低的变形温度下得到具有良好成型性的热变形钕铁硼材料。该方法对于对于获得较小晶粒尺寸的热变形钕铁硼磁体、提高该类磁体的矫顽力至关重要,该方法简单,易于实现,适于工业生产。适于工业生产。适于工业生产。
技术研发人员:李晓红 陈鹏 寇建元 娄理 张湘义
受保护的技术使用者:燕山大学
技术研发日:2023.05.12
技术公布日:2023/9/5
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/