一种配电网光伏最大准入功率评估方法及系统

未命名 09-08 阅读:149 评论:0


1.本发明涉及电力系统数据处理技术领域,特别涉及一种配电网光伏最大准入功率评估方法及系统。


背景技术:

2.本部分的陈述仅仅是提供了与本发明相关的背景技术,并不必然构成现有技术。
3.因清洁充足的太阳能资源以及“屋顶光伏”等便捷的安装方式,光伏发电技术受到广泛关注。一方面,为了充分利用太阳能资源,最大化投资效益,希望分布式光伏输出功率更大;另一方面,过大的分布式光伏出力可能会导致电压越限、潮流返送和谐波超标等问题,给配电网的电能质量和安全经济运行带来挑战。此外,光伏出力易受光照、温度等气象条件的影响,具有间歇性和随机性特点,且地理位置相近的光伏出力具有一定的空间相关性,加剧了配电网的不确定性并对配电网的光伏承载能力产生了影响。
4.然而,确定性方法在计算配电网光伏最大准入功率时,无法计及光伏的随机性和相关性,其结果通常是满足特殊条件甚至极端条件的配电网电能质量和安全稳定约束的光伏输出功率极限值,造成评估分析结果极大的保守性,与真实配电网的最大准入功率之间存在一定偏差。


技术实现要素:

5.为了解决现有技术的不足,考虑到光伏出力随机性和相关性对配电网运行状态的影响,以及配电网电能质量指标“合格率”的要求,本发明提供了一种配电网光伏最大准入功率评估方法及系统,能够对配电网的光伏最大准入功率进行有效分析,并且得到的光伏准入功率方案较好地保证了配电网的优质供电水平。
6.为了实现上述目的,本发明采用如下技术方案:第一方面,本发明提供了一种配电网光伏最大准入功率评估方法。
7.一种配电网光伏最大准入功率评估方法,包括以下过程:根据获取的配电网参量数据进行概率潮流计算,得到配电网系统的运行状态数据;根据得到的运行状态数据,以各光伏节点总输出功率与配电网系统网损期望值的最大差值为自适应遗传算法模型的适应度,得到最优个体,所述最优个体包括使得配电网光伏准入功率最大的各个节点的光伏准入功率。
8.作为本发明第一方面进一步的限定,进行多轮次迭代,当满足迭代要求时,得到使得配电网光伏准入功率最大的各光伏节点准入功率;当不满足迭代要求时,采用精英保留策略对最优个体进行选择操作,并对最优个体进行改进自适应交叉和变异操作,更新配电网系统的运行状态数据并再次进行最优个体的计算,直至满足迭代要求时得到使得配电网光伏准入功率最大的各光伏节点准入功率。
9.作为本发明第一方面进一步的限定,所述迭代要求,包括:
到达最大遗传迭代轮次;或者,相邻两迭代轮次的最优个体适应度值的差值小于阈值。
10.作为本发明第一方面进一步的限定,以各光伏节点总输出功率与配电网系统网损期望值的最大差值为自适应遗传算法的适应度,包括:以各光伏节点输出功率的加权和与配电网系统网损期望值的差值最大化为自适应遗传算法的适应度,其中,任一光伏节点输出功率的权重为光伏有功功率平均标准差与此光伏节点光伏有功功率标准差的比值。
11.作为本发明第一方面进一步的限定,配电网参量数据,包括:配电网网络参数数据、各光伏节点参数数据和配电网负荷基本参数数据;最优个体还包括各节点的光伏逆变器功率因数以及对应的适应度值。
12.作为本发明第一方面进一步的限定,自适应遗传算法模型的约束,包括:基波潮流方程等式约束、谐波潮流方程等式约束、节点基波电压机会约束、节点各频次谐波电压机会约束、节点电压总谐波畸变率机会约束、非光伏接入节点电压谐波畸变率机会约束、支路均方根电流约束、支路传输容量约束和光伏逆变器功率因数约束;不满足节点基波电压机会约束、节点各频次谐波电压机会约束、节点电压总谐波畸变率机会约束、非光伏接入节点电压谐波畸变率机会约束条件、支路均方根电流约束、支路传输容量和光伏逆变器功率因数约束的适应度为零。
13.作为本发明第一方面进一步的限定,配电网系统的运行状态数据,包括:配电网节点基波电压、节点各频次谐波电压和节点电压总谐波畸变率。
14.第二方面,本发明提供了一种配电网光伏最大准入功率估计系统。
15.一种配电网光伏最大准入功率估计系统,包括:数据获取模块,被配置为:根据获取的配电网参量数据进行概率潮流计算,得到配电网系统的运行状态数据;最优个体计算模块,被配置为:根据得到的运行状态数据,以各光伏节点总输出功率与配电网系统网损期望值的最大差值为自适应遗传算法模型的适应度,得到最优个体,所述最优个体包括使得配电网光伏准入功率最大的各个节点的光伏准入功率。
16.作为本发明第二方面进一步的限定,最优个体计算模块中,以各光伏节点总输出功率与配电网系统网损期望值的最大差值为自适应遗传算法的适应度,包括:以各光伏节点输出功率的加权和与配电网系统网损期望值的差值最大化为自适应遗传算法的适应度,其中,任一光伏节点输出功率的权重为光伏有功功率平均标准差与此光伏节点光伏有功功率标准差的比值。
17.作为本发明第二方面进一步的限定,最优个体计算模块中,自适应遗传算法模型的约束,包括:基波潮流方程等式约束、谐波潮流方程等式约束、节点基波电压机会约束、节点各频次谐波电压机会约束、节点电压总谐波畸变率机会约束、非光伏接入节点电压谐波畸变率机会约束、支路均方根电流约束、支路传输容量约束和光伏逆变器功率因数约束;不满足节点基波电压机会约束、节点各频次谐波电压机会约束、节点电压总谐波畸变率机会约束、非光伏接入节点电压谐波畸变率机会约束条件、支路均方根电流约束、支路传输容量和光伏逆变器功率因数约束的适应度为零。
18.与现有技术相比,本发明的有益效果是:1、本发明创新性的提出了一种配电网光伏最大准入功率评估方法及系统,考虑了光伏出力随机性和相关性对配电网运行状态的影响,使最优解避免受到配电网源荷随机性的影响,大大降低了非最优的解决方案出现的可能性。
19.2、本发明创新性的提出了一种配电网光伏最大准入功率评估方法及系统,考虑了电能质量机会约束以及光伏逆变器的无功功率调节能力,同时计及节点基波电压、节点各频次谐波电压、电压总谐波畸变率等电能质量指标要求,能够有效防止网损升高和改善电压质量。
20.3、本发明创新性的提出了一种配电网光伏最大准入功率评估方法及系统,允许在一定的置信度水平下出现不满足约束条件的情况,将传统的刚性约束条件变成了柔性约束条件,避免了因为考虑小概率事件而大大降低光伏的准入功率。
21.本发明附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
22.构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
23.图1为本发明实施例1提供的配电网光伏最大准入功率评估方法的流程图;图2为本发明实施例1提供的交叉概率的概率调整曲线;图3为本发明实施例1提供的改进的ieee 33节点配电系统结构图;图4为本发明实施例1提供的节点基波电压幅值的90%分位数;图5为本发明实施例1提供的节点电压总谐波畸变率的90%分位数;其中,图1中,iaga代表improved adaptive genetic algorithm,即改进自适应遗传算法。
具体实施方式
24.下面结合附图与实施例对本发明作进一步说明。
25.在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
26.实施例1:如图1所示,本发明实施例1提供了一种配电网光伏最大准入功率评估方法,包括以下过程:s01:输入配电网网络参数、光伏节点参数和负荷基本参数等(例如配电网拓扑结构、支路阻抗,各节点负荷的有功功率、无功功率的概率统计特征,光伏输出的有功功率、无功功率的概率统计特征等),初始化iaga(improved adaptive genetic algorithm,改进自适应遗传算法,即引进sigmoid函数对传统的自适应遗传算法进行了改进)参数。
27.s02:设置iaga迭代次数为0,采用实数编码方式对iaga进行编码,控制变量为每个节点安装光伏的输出功率及光伏逆变器的功率因数,并初始化iaga种群。
28.s03:采用概率潮流计算得到配电网节点基波电压、节点各频次谐波电压、节点电压总谐波畸变率等运行状态变量某一分位数的值(即得到各输出随机变量的概率分布)。
29.s04:采用光伏输出功率和系统网损的期望值计算适应度,不满足节点基波电压、节点各频次谐波电压、节点电压总谐波畸变率、非光伏接入节点电压谐波畸变率机会约束条件和支路均方根电流、支路传输容量、光伏逆变器功率因数不等式约束条件的适应度为0,并记录当前迭代过程中的最优个体。
30.s05:更新迭代次数,判断iaga迭代次数是否达到最大遗传迭代次数或两次迭代过程中最优个体适应度值的差值小于某一数值的最大进化迭代数。若不满足转到s06,若满足转到s07。
31.s06:采用精英保留策略对个体进行选择操作,并对个体进行改进自适应交叉和变异操作,转到s03。
32.s07:输出最优个体(即节点光伏准入功率以及光伏逆变器的功率因数)和最大适应度值,从而使配电网的光伏准入功率最大。
33.更具体的,在s04中,适应度的函数表达式为:(1)其中,n为配电网的节点数;xi为0或1,取1表示节点i接入光伏,取0表示节点i没有接入光伏;μi为其权重;p
pvi
为节点i接入的光伏输出功率;p
loss
为配电网基波损耗的期望;p
loss,h
为h次谐波损耗的期望;h为最高谐波频次。
34.权重μi的计算方法为:假设共计m个节点接入光伏,第i个节点的光伏有功功率标准差为σi,若节点i没有接入光伏则标准差为0,光伏有功功率平均标准差σ
avg
的表达式为:(2)因此光伏准入功率权重μi的表达式为:(3)在s04中,约束条件分别为:(1)基波潮流方程等式约束(4)式中,下标为节点编号;p
pvi
、q
pvi
分别为节点i处光伏有功、无功功率;p
li
、q
li
分别为节点i处有功、无功负荷;vi、vj分别表示节点i、j基波电压幅值;g
ij
与b
ij
分别为支路ij的电导和电纳参数;δ
ij
表示节点电压的相角差。
35.(2)谐波潮流方程等式约束
(5)式中,yh ij为h次谐波节点导纳矩阵的元素;为节点i处的h次谐波注入电流;为节点i的h次谐波电压。
36.(3)节点基波电压机会约束(6)式中,pr{

}为{

}中事件成立的概率;ui为节点i的基波电压;u
imin
、u
imax
为节点i的基波电压幅值的上下限;ω
node
为配电网的节点集合;λi为节点i基波电压的置信水平。
37.(4)节点各频次谐波电压机会约束(7)式中,为节点i的h次谐波电压;、为节点i的h次谐波电压幅值的上下限;为节点i的h次谐波电压的置信水平。
38.(5)节点电压总谐波畸变率机会约束(8)式中,thd
imax
为节点i所允许的电压总谐波畸变率的最大值;βi为节点i电压总谐波畸变率的置信水平;m为低频谐波的谐波频次集合。
39.(6)非光伏接入节点电压谐波畸变率机会约束(9)式中,hd
imax
为非光伏接入节点i所允许的电压谐波畸变率的最大值;ω
nopv
为配电网的非光伏接入节点集合;θi为非光伏接入节点i电压谐波畸变率的置信水平;n为高频谐波的谐波频次集合,一般表示开关频率整数倍及其附近的谐波频次。
40.(7)支路均方根电流约束(10)
式中,i
ij,rms
是支路ij的均方根电流;i
ij,min
和i
ij,max
分别是i
ij,rms
的上限和下限值;i
ij
和i
ij,h
分别是支路ij的基波电流和h次谐波电流。
41.(8)支路传输容量约束(11)式中,s
ij
、s
ijmax
分别表示支路ij的传输容量、允许的最大传输容量。
42.(9)光伏逆变器功率因数约束光伏逆变器的功率因数在-0.95 ~ +0.95范围内可调,无功功率q
pv
根据有功功率p
pv
所导致的电压的上升或者下降进行相反方向的调节。
43.在s06中,改进自适应的交叉概率在求解最大值问题时的概率调整曲线如图2所示,改进自适应交叉概率为:(12)式中,;f
max
、f
min
分别为群体中最大和最小的适应度值;f
avg
为每代群体的平均适应度值;为要交叉的2个个体中较大的适应度值。
44.在s06中,改进自适应变异概率为:(13)式中,;f为变异个体的适应度值。
45.利用本实施例所提的基于电能质量机会约束的配电网光伏最大准入功率评估方法,搭建仿真模型,系统拓扑结构图如图3所示,光伏接入节点分别为5、12、20、29,相关系数为0.6。设置了四种场景验证本发明所提计算方法的合理性和有效性,且四种场景均在相同的源荷概率统计特征和置信水平下进行研究。
46.场景一:光伏接入节点5和节点29,且不考虑节点电压总谐波畸变率约束;场景二:光伏接入节点5和节点29;场景三:光伏接入节点5、节点12、节点20和节点29,且不考虑节点电压总谐波畸变率约束;场景四:光伏接入节点5、节点12、节点20和节点29。
47.四种场景下的分析结果如表1所示。与未接入光伏相比,系统基波损耗期望值分别变化到原来的65.02%、43.78%、116.28和80.08%。光伏准入功率较小时,可以有效地减小系统基波损耗,当光伏准入功率超过一定范围时,造成了损耗增加。对比谐波损耗期望值发现,随着光伏准入功率和接入数量的增多,系统谐波损耗增加。
48.表1:不同场景下的光伏最大准入功率。
49.节点5功率/kw节点12功率/kw节点20功率/kw节点29功率/kw光伏准入功率/kw系统基波损耗/kw系统谐波损耗/kw目标值/kw场景一4913.5——2500.17413.6128.06.67279场景二4926.7——1298.96225.686.14.16135.4场景三4858.91101.04449.71809.812219.4228.710.211981场景四4655.8596.84213.4704.110170.1157.56.710006
图4展示了四个场景下各个节点基波电压幅值的90%分位数。系统接入光伏之前,节点基波电压质量较差,节点基波电压严重低于电压下限。四种光伏接入场景的节点基波电压质量得到了极大改善,且全部处于正常范围。特别是对于考虑节点电压总谐波畸变率约束的场景,大多数节点基波电压90%分位数的标幺值均在0.98p.u.-1.02p.u.,电压分布的离散度相对较小。
50.图5展示了四个场景下各个节点的电压总谐波畸变率的90%分位数。当只考虑节点基波电压幅值约束时,场景一和场景三的光伏最大准入功率方案中都出现了某个节点的电压总谐波畸变率越限的情况。此外,四个节点接入光伏比两个节点接入光伏的节点电压总谐波畸变率水平更高,这是因为每一个光伏都作为一个谐波源,导致系统更加严重的谐波畸变问题。
51.上述仿真结果表明,在分析配电网光伏最大准入功率时,特别是多节点光伏接入的场景,谐波成为不可忽视的制约因素。同时兼顾基波电压和谐波电压约束的分析方法能够合理地进行系统的光伏承载能力分析,可以有效防止网损升高并且改善系统的电压质量。
52.本实施例考虑了光伏出力随机性和相关性对配电网运行状态的影响,使最优解避免受到配电网源荷随机性的影响,大大降低了非最优的解决方案出现的可能性。
53.本实施例考虑了电能质量机会约束以及光伏逆变器的无功功率调节能力,同时计及节点基波电压、节点各频次谐波电压、电压总谐波畸变率等电能质量指标能够有效防止网损升高和改善电压质量。并且允许在一定的置信度水平下出现不满足约束条件的情况,将传统的刚性约束条件变成了柔性约束条件,避免了因为考虑小概率事件而大大降低光伏的准入功率。
54.本实施例采用iaga算法,通过引进sigmoid函数,平滑了f
avg
附近的自适应调整曲线,使交叉概率缓慢变化以确保平均适应度的个体保持高交叉概率;同时,降低了f
max
附近个体的交叉概率以尽可能保持优良的个体,并保证交叉概率为非零值,有效地改善了局部收敛和避免了算法停滞;此外,增加了f
min
附近个体的交叉概率,加快进化速度。
55.实施例2:本发明实施例2提供了一种配电网光伏最大准入功率估计系统,包括:数据获取模块,被配置为:根据获取的配电网参量数据进行概率潮流计算,得到配电网系统的运行状态数据;最优个体计算模块,被配置为:根据得到的运行状态数据,以各光伏节点总输出功率与配电网系统网损期望值的最大差值为自适应遗传算法模型的适应度,得到最优个体,所述最优个体包括使得配电网光伏准入功率最大的各个节点的光伏准入功率。
56.所述系统的各模块工作方法与实施例1提供的配电网光伏最大准入功率评估方法的对应部分相同,这里不再赘述。
57.以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

技术特征:
1.一种配电网光伏最大准入功率评估方法,其特征在于,包括以下过程:根据获取的配电网参量数据进行概率潮流计算,得到配电网系统的运行状态数据;根据得到的运行状态数据,以各光伏节点总输出功率与配电网系统网损期望值的最大差值为自适应遗传算法模型的适应度,得到最优个体,所述最优个体包括使得配电网光伏准入功率最大的各个节点的光伏准入功率。2.如权利要求1所述的配电网光伏最大准入功率评估方法,其特征在于,进行多轮次迭代,当满足迭代要求时,得到使得配电网光伏准入功率最大的各光伏节点准入功率;当不满足迭代要求时,采用精英保留策略对最优个体进行选择操作,并对最优个体进行改进自适应交叉和变异操作,更新配电网系统的运行状态数据并再次进行最优个体的计算,直至满足迭代要求时得到使得配电网光伏准入功率最大的各光伏节点准入功率。3.如权利要求2所述的配电网光伏最大准入功率评估方法,其特征在于,所述迭代要求,包括:到达最大遗传迭代轮次;或者,相邻两迭代轮次的最优个体适应度值的差值小于设定阈值。4.如权利要求1-3任一项所述的配电网光伏最大准入功率评估方法,其特征在于,以各光伏节点总输出功率与配电网系统网损期望值的最大差值为自适应遗传算法的适应度,包括:以各光伏节点输出功率的加权和与配电网系统网损期望值的差值最大化为自适应遗传算法的适应度,其中,任一光伏节点输出功率的权重为光伏有功功率平均标准差与此光伏节点光伏有功功率标准差的比值。5.如权利要求1-3任一项所述的配电网光伏最大准入功率评估方法,其特征在于,配电网参量数据,包括:配电网网络参数数据、各光伏节点参数数据和配电网负荷基本参数数据;最优个体还包括各节点的光伏逆变器功率因数以及对应的适应度值。6.如权利要求1-3任一项所述的配电网光伏最大准入功率评估方法,其特征在于,自适应遗传算法模型的约束,包括:基波潮流方程等式约束、谐波潮流方程等式约束、节点基波电压机会约束、节点各频次谐波电压机会约束、节点电压总谐波畸变率机会约束、非光伏接入节点电压谐波畸变率机会约束、支路均方根电流约束、支路传输容量约束和光伏逆变器功率因数约束;不满足节点基波电压机会约束、节点各频次谐波电压机会约束、节点电压总谐波畸变率机会约束、非光伏接入节点电压谐波畸变率机会约束条件、支路均方根电流约束、支路传输容量和光伏逆变器功率因数约束的适应度为零。7.如权利要求1-3任一项所述的配电网光伏最大准入功率评估方法,其特征在于,配电网系统的运行状态数据,包括:配电网节点基波电压、节点各频次谐波电压和节点电压总谐波畸变率。8.一种配电网光伏最大准入功率估计系统,其特征在于,包括:数据获取模块,被配置为:根据获取的配电网参量数据进行概率潮流计算,得到配电网系统的运行状态数据;
最优个体计算模块,被配置为:根据得到的运行状态数据,以各光伏节点总输出功率与配电网系统网损期望值的最大差值为自适应遗传算法模型的适应度,得到最优个体,所述最优个体包括使得配电网光伏准入功率最大的各个节点的光伏准入功率。9.如权利要求8所述的配电网光伏最大准入功率估计系统,其特征在于,最优个体计算模块中,以各光伏节点总输出功率与配电网系统网损期望值的最大差值为自适应遗传算法的适应度,包括:以各光伏节点输出功率的加权和与配电网系统网损期望值的差值最大化为自适应遗传算法的适应度,其中,任一光伏节点输出功率的权重为光伏有功功率平均标准差与此光伏节点光伏有功功率标准差的比值。10.如权利要求8或9所述的配电网光伏最大准入功率估计系统,其特征在于,最优个体计算模块中,自适应遗传算法模型的约束,包括:基波潮流方程等式约束、谐波潮流方程等式约束、节点基波电压机会约束、节点各频次谐波电压机会约束、节点电压总谐波畸变率机会约束、非光伏接入节点电压谐波畸变率机会约束、支路均方根电流约束、支路传输容量约束和光伏逆变器功率因数约束;不满足节点基波电压机会约束、节点各频次谐波电压机会约束、节点电压总谐波畸变率机会约束、非光伏接入节点电压谐波畸变率机会约束条件、支路均方根电流约束、支路传输容量和光伏逆变器功率因数约束的适应度为零。

技术总结
本发明提供了一种配电网光伏最大准入功率评估方法及系统,属于电力系统数据处理技术领域。所述方法,包括:根据得到的运行状态数据,以各光伏节点总输出功率与配电网系统网损期望值的最大差值为自适应遗传算法模型的适应度,得到当前迭代轮次的最优个体,所述最优个体包括各个节点的光伏准入功率;本发明能够对配电网的光伏最大准入功率进行有效分析,并且得到的光伏准入功率方案较好地保证了配电网的优质供电水平。网的优质供电水平。网的优质供电水平。


技术研发人员:孙媛媛 徐龙威 丁磊 李亚辉 孙凯祺 刘智杰 单鹏博 李博文 张安彬 李国斌
受保护的技术使用者:山东大学
技术研发日:2023.08.04
技术公布日:2023/9/7
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

飞机超市 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

相关推荐