一种用于陶瓷探针的碳化硅复合陶瓷材料及其制备方法与流程

未命名 09-13 阅读:69 评论:0


1.本发明涉及陶瓷材料技术领域,具体设计一种用于陶瓷探针的碳化硅复合陶瓷材料及其制备方法。


背景技术:

2.导电陶瓷是指在一定条件(温度、压力)下具有电子(或空穴)电导或离子电导的陶瓷。导电陶瓷属于新型功能特种陶瓷,是一类基础性材料,既有陶瓷的各种性质,如抗氧化性、耐高温、耐腐蚀、低成本、机械性能好等特点,又具有金属态的导电特性。其电阻率可以在较大范围内调整,因此在许多特殊环境与场合得到应用,如现代国防和国民经济,在镀铝工业用的蒸发舟、高速列车的受电弓、固体燃料电池电极、气敏元件、电火花加工等诸多领域,是其他材料所不能比拟的。
3.中国专利201510628153.5中公开了一种导电陶瓷,本发明公开了一种导电陶瓷材料及其制备方法,上述导电陶瓷材料,由包含以下重量份的组分制成:三氧化铝65-70份、锂辉石25-30份、铁氧体5-8份、碳化钛2-5份、三氧化二锑2-3份、纳米碳化硅粉末1-2份、聚硅酸铝铁1-2份、碳酸锶0.5-1份、钛酸四丁脂0.5-1份和过硫酸铵0.02-0.8份。本发明还提供了一种导电陶瓷材料的制备方法。但该材料存在着电阻率不均匀,导电率低,耐高温和化学稳定性能差等问题。
4.中国发明专利cn03139036.6中公开了一种导电陶瓷,通过在陶瓷基料中添加非金属导电材料,经高温烧制后得到中间层具有导电层的陶瓷材料,但该材料存在着电阻率不均匀,易吸潮,高温老化速度快的问题。


技术实现要素:

5.针对上述问题,本发明提供一种用于陶瓷探针的碳化硅复合陶瓷材料,通过使用特定的氮化硅、碳化硅等原料成分复配,并添加特定的金属氧化物和粘结剂等成分,制得的碳化硅陶瓷材料具有结构致密、粒径均匀、电阻率均匀,导电率高的优点;且化学稳定性高、耐磨性好、耐高温能力强,使用寿命长。
6.本发明提供一种用于陶瓷探针的碳化硅复合陶瓷材料,按重量份计,原料包括氮化硅30-50份、碳化硅40-60份、金属氧化物5-8份、氮化铝3-5份、粘结剂5-15份。
7.优选的,所述氮化硅为粒径d50为100nm~1.0μm的氮化硅和1nm~100nm的氮化硅。
8.进一步优选的,所述粒径d50为100nm~1.0μm的氮化硅和1nm~100nm的氮化硅的质量比为3-5:1。
9.优选的,所述碳化硅为粒径为200-400目的碳化硅。
10.优选的,所述金属氧化物为氧化镁、氧化铝、氧化钇、氧化铈中的一种或多种混合。
11.进一步优选的,所述金属氧化物为氧化钇。
12.优选的,所述氧化钇的粒度d50小于1微米。
13.优选的,所述氮化硅和氧化钇的质量比为5-8:1。
14.发明人在实验中发现,将特定的氮化硅和碳化硅配合使用时,特别是当同时添加有氧化钇时,能有效提高陶瓷材料的致密性和电导率,制得的陶瓷材料具有优异的强度、韧性和导电性。发明人分析,可能是由于当使用氮化硅掺杂的碳化硅材料时,n原子会优先占据c原子的位置,会形成一个正电荷和一个多余的价电子,多余的价电子被束缚在正电荷周围,但只需要很少的能量即可打破束缚,使得价电子成为导电电子在晶格中自由运动,而失去一个价电子的n原子会成为n
+
。从而使碳化硅具有导电特性,降低材料的电阻率。
15.与此同时,发明人发现,特别当添加有氧化钇且氮化硅和氧化钇的质量比为5-8:1时,能进一步提高电导率。可能是由于同时添加的氮化硅和氧化钇能够一直陶瓷材料中的碳化硅的β相向α相的相变发生,进而降低电阻率。但是若氮化硅或氧化钇含量过高,反而会影响碳化硅的强度和韧性等力学性能。发明人分析,可能是由于若氧化钇等含量过多,会使得晶粒长大出现二次结晶等情况,影响陶瓷材料的致密性和粒径均匀度,从而影响其强度等力学性能。
16.优选的,所述粘结剂为pva、pvb、环氧树脂、酚醛树脂、纤维素中的一种或多种混合。
17.优选的,所述粘结剂为环氧树脂。
18.优选的,所述用于陶瓷探针的碳化硅复合陶瓷材料还含有碳化钛。
19.优选的,所述碳化钛为20-30份。
20.进一步优选的,所述碳化钛的纯度>98%,粒径<10μm。
21.本发明第二方面提供一种用于陶瓷探针的碳化硅复合陶瓷材料的制备方法,具体步骤如下:
22.s1、混合:将除粘结剂外的原料溶于乙醇中,进行球磨,将球磨所得的浆料进行干燥,得到混合料;
23.s2、成型:将混合料、粘结剂溶于乙醇中混合,搅拌得混合浆料;将混合浆料注入模具中,晾干后脱模得到陶瓷材料生胚;
24.s3、烧结:将待烧结生坯放入烧结炉中,升温至1800-2300℃,保温3-6h,冷却即得所述陶瓷材料。
25.优选的,所述步骤s1中球磨速率为1000-1800r/min,球磨时间为1-5h。
26.优选的,所述步骤s3的烧结步骤具体为:将生胚放入烧结炉中,抽真空至压力<20pa;在保护气氛下在进行升温烧结;先升温至280-320℃,压力为1-2mpa,保温2-3h,升温速率为80℃/h;再升温至1200-1500℃,保温2-3h,加压至2-3mpa,升温速率为150℃/h;再升温至1800-2300℃,加压至3-5mpa,保温3-6h,升温速率为50℃/h,压力为2-4mpa;降温至800℃,降温速率为120℃/h;后自然冷却制得所述导电碳化硅复合陶瓷。
27.与现有技术相比,本发明具有如下有益效果:
28.本发明通过使用特定的氮化硅、碳化硅等原料成分复配,并添加特定的金属氧化物和粘结剂等成分,制得的碳化硅陶瓷材料具有结构致密、粒径均匀、电阻率均匀,导电率高的优点;且化学稳定性高、耐磨性好、耐高温能力强,使用寿命长。本发明制得的陶瓷材料硬度好,电导率达到3-4.5
×
10-2
s/cm。
具体实施方式
29.为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。需要注意的是,以下实施例是对本发明的进一步说明,而不是对本发明的限制。
30.实施例
31.实施例1
32.本实施例提供一种用于陶瓷探针的碳化硅复合陶瓷材料,按重量份计,包括氮化硅40份、碳化硅50份、金属氧化物6份、氮化铝4份、粘结剂10份,碳化钛25份。
33.氮化硅为粒径d50为500nm的氮化硅和50nm的氮化硅,粒径d50为500nm的氮化硅和50nm的氮化硅的质量比为4:1;购于福斯曼科技(北京)有限公司。
34.碳化硅为粒径为300目的碳化硅,购于清河县瑞江金属材料有限公司。
35.金属氧化物为氧化钇;氧化钇的粒度d50小于1微米。
36.粘结剂为环氧树脂e51。
37.碳化钛的纯度>98%,粒径<10μm;购于湖南华斯盛科技股份有限公司。
38.本实施例第二方面提供一种用于陶瓷探针的碳化硅复合陶瓷材料的制备方法,具体步骤如下:
39.s1、混合:将除粘结剂外的原料溶于乙醇中,进行球磨1-5h,球磨速率为1000-1800r/min,将球磨所得的浆料进行干燥,得到混合料;
40.s2、成型:将混合料、粘结剂溶于乙醇中混合,搅拌得混合浆料;将混合浆料注入模具中,晾干后脱模得到陶瓷材料生胚;
41.s3、烧结:将生胚放入烧结炉中,抽真空至压力<20pa;在保护气氛下在进行升温烧结;先升温至300℃,压力为1.5mpa,保温2h,升温速率为80℃/h;再升温至1300℃,保温2h,加压至3mpa,升温速率为150℃/h;再升温至2000℃,加压至4mpa,保温5h,升温速率为50℃/h,压力为4mpa;降温至800℃,降温速率为120℃/h;后自然冷却制得所述导电碳化硅复合陶瓷。
42.实施例2
43.本实施例提供一种用于陶瓷探针的碳化硅复合陶瓷材料,按重量份计,包括氮化硅30份、碳化硅40份、金属氧化物5份、氮化铝3份、粘结剂5份,碳化钛20份。
44.氮化硅为粒径d50为500nm的氮化硅和50nm的氮化硅,粒径d50为500nm的氮化硅和50nm的氮化硅的质量比为4:1;购于福斯曼科技(北京)有限公司。
45.碳化硅为粒径为300目的碳化硅,购于清河县瑞江金属材料有限公司。
46.金属氧化物为氧化钇;氧化钇的粒度d50小于1微米。
47.粘结剂为环氧树脂e51。
48.碳化钛的纯度>98%,粒径<10μm;购于湖南华斯盛科技股份有限公司。
49.本实施例第二方面提供一种用于陶瓷探针的碳化硅复合陶瓷材料的制备方法,具体步骤同实施例1。
50.实施例3
51.本实施例提供一种用于陶瓷探针的碳化硅复合陶瓷材料,按重量份计,包括氮化硅50份、碳化硅60份、金属氧化物8份、氮化铝5份、粘结剂15份,碳化钛30份。
52.氮化硅为粒径d50为500nm的氮化硅和50nm的氮化硅,粒径d50为500nm的氮化硅和50nm的氮化硅的质量比为4:1;购于福斯曼科技(北京)有限公司。
53.碳化硅为粒径为300目的碳化硅,购于清河县瑞江金属材料有限公司。
54.金属氧化物为氧化钇;氧化钇的粒度d50小于1微米。
55.粘结剂为环氧树脂e51。
56.碳化钛的纯度>98%,粒径<10μm;购于湖南华斯盛科技股份有限公司。
57.本实施例第二方面提供一种用于陶瓷探针的碳化硅复合陶瓷材料的制备方法,具体步骤同实施例1。
58.对比例1
59.本实施例提供一种用于陶瓷探针的碳化硅复合陶瓷材料,具体实施例方式同实施例1,与实施例1的区别在于,金属氧化物为10份。
60.本实施例第二方面提供一种用于陶瓷探针的碳化硅复合陶瓷材料的制备方法,具体步骤同实施例1。
61.对比例2
62.本实施例提供一种用于陶瓷探针的碳化硅复合陶瓷材料,具体实施例方式同实施例1,与实施例1的区别在于,未添加金属氧化物。
63.本实施例第二方面提供一种用于陶瓷探针的碳化硅复合陶瓷材料的制备方法,具体步骤同实施例1。
64.对比例3
65.本实施例提供一种用于陶瓷探针的碳化硅复合陶瓷材料,具体实施例方式同实施例1,与实施例1的区别在于,碳化钛为10份,粒径为20μm。
66.本实施例第二方面提供一种用于陶瓷探针的碳化硅复合陶瓷材料的制备方法,具体步骤同实施例1。
67.对比例4
68.本实施例提供一种用于陶瓷探针的碳化硅复合陶瓷材料,具体实施例方式同实施例1,与实施例1的区别在于,氮化硅为粒径d50为1nm~100nm的氮化硅。
69.本实施例第二方面提供一种用于陶瓷探针的碳化硅复合陶瓷材料的制备方法,具体步骤同实施例1。
70.性能测试
71.1.硬度测试:使用维氏硬度计进行硬度测试。
72.2.四点抗弯强度测试:按照测试标准iso14704:2016进行测定。
73.3.电导率:四探针测试仪实时采集两次组合模式下的测试数据,采集到的数据经计算机分析,从而得到所需的测试结果。
74.4.热膨胀系数:按照gb/t16535-1996测试方法进行测试。
75.将实施例1-3、对比例1-4的碳化硅复合陶瓷材料进行以上性能测试,测试结果如下表1。
76.表1
77.
技术特征:
1.一种用于陶瓷探针的碳化硅复合陶瓷材料,其特征在于,按重量份计,原料包括氮化硅30-50份、碳化硅40-60份、金属氧化物5-8份、氮化铝3-5份、粘结剂5-15份。2.根据权利要求1所述的一种用于陶瓷探针的碳化硅复合陶瓷材料,其特征在于,所述氮化硅为粒径d50为100nm~1.0μm的氮化硅和1nm~100nm的氮化硅。3.根据权利要求2所述的一种用于陶瓷探针的碳化硅复合陶瓷材料,其特征在于,所述粒径d50为100nm~1.0μm的氮化硅和1nm~100nm的氮化硅的质量比为3-5:1。4.根据权利要求1所述的一种用于陶瓷探针的碳化硅复合陶瓷材料,其特征在于,所述金属氧化物为氧化镁、氧化铝、氧化钇、氧化铈中的一种或多种混合。5.根据权利要求4所述的一种用于陶瓷探针的碳化硅复合陶瓷材料,其特征在于,所述金属氧化物为氧化钇。6.根据权利要求5所述的一种用于陶瓷探针的碳化硅复合陶瓷材料,其特征在于,所述氮化硅和氧化钇的质量比为5-8:1。7.根据权利要求1所述的一种用于陶瓷探针的碳化硅复合陶瓷材料,其特征在于,所述粘结剂为pva、pvb、环氧树脂、酚醛树脂、纤维素中的一种或多种混合。8.根据权利要求1所述的一种用于陶瓷探针的碳化硅复合陶瓷材料,其特征在于,所述用于陶瓷探针的碳化硅复合陶瓷材料还含有碳化钛。9.根据权利要求8所述的一种用于陶瓷探针的碳化硅复合陶瓷材料,其特征在于,所述碳化钛为20-30份。10.根据权利要求1-9任一项所述的一种用于陶瓷探针的碳化硅复合陶瓷材料的制备方法,其特征在于,具体步骤如下:s1、混合:将除粘结剂外的原料溶于乙醇中,进行球磨,将球磨所得的浆料进行干燥,得到混合料;s2、成型:将混合料、粘结剂溶于乙醇中混合,搅拌得混合浆料;将混合浆料注入模具中,晾干后脱模得到陶瓷材料生胚;s3、烧结:将待烧结生坯放入烧结炉中,升温至1800-2300℃,保温3-6h,冷却即得所述陶瓷材料。

技术总结
本发明提供一种用于陶瓷探针的碳化硅复合陶瓷材料,按重量份计,原料包括氮化硅30-50份、碳化硅40-60份、金属氧化物5-8份、氮化铝3-5份、粘结剂5-15份。本发明通过使用特定的氮化硅、碳化硅等原料成分复配,并添加特定的金属氧化物和粘结剂等成分,制得的碳化硅陶瓷材料具有结构致密、粒径均匀、电阻率均匀,导电率高的优点;且化学稳定性高、耐磨性好、耐高温能力强,使用寿命长。本发明制得的陶瓷材料电导率达到3-4.5


技术研发人员:朱福林 肖亮 李杨 刘明 李能
受保护的技术使用者:衡阳凯新特种材料科技有限公司
技术研发日:2023.05.05
技术公布日:2023/9/12
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

飞机超市 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

相关推荐