具有高热导率的粉末材料的制作方法
未命名
09-13
阅读:91
评论:0

1.本发明涉及冶金,特别地涉及用于通过增材技术生产部件的铝合金粉末材料。
背景技术:
2.增材制造越来越多地用于由金属粉末材料生产部件。选区激光熔化(slm)是最广泛使用的生产金属部件的增材技术。增材技术相对于传统铝合金生产技术的关键优势在于:生产成品的时间更短、以最小加工余量生产成形部件的能力、使用拓扑优化和仿生设计方法生产具有改进的重量效率的部件的能力、以及使用新材料组合物确保与当前使用的系列合金相比更高的一系列性质的能力。
3.这吸引了专门生产航空航天和汽车工业用先进产品的公司的兴趣。为了确保竞争力和成本效益,在这些领域中使用的部件和结构元件在它们的重量效率方面受到严格的要求。热交换器是用于确保航空和汽车工业的产品的操作的最重要的装置之一;其效率由能量转换效率因子决定。通过增加确保存在更多热传递区域的设计复杂性和通过使用高导热性材料,可以增加该能量转换效率因子。目前,铜是选择用于热交换器的主要材料,因为其具有400w/m*k的最高热导率系数之一。然而,铜的高密度,8.9g/cm3,不能满足高度竞争产品的严格重量效率要求。使用具有2.7g/cm3的密度和200w/m*k热导率的铝合金以及使用允许生产具有增加数量的热交换区域的复杂结构的增材技术,可以将航空航天和机动车辆中的热交换器的重量与铜相比能减少10倍。
4.alsi10mg合金是目前slm技术中使用最广泛的铝合金;它含有9-11wt%的硅和0.20-0.60wt%的镁(参见process optimisation and microstructural analysis for selective laser melting of alsi10mg.k.kempen,l.thijs,e.yasa,m.badrossamay,w.verheecke,jp.kruth.solid freeform fabrication symposium conference,vol.22,pages.484-495,2011)。
5.该材料是具有良好可铸性和低热裂倾向的中等强度铝合金(拉伸强度:320mpa,屈服强度:210mpa),这使得其适用于slm工艺。但是,硅含量多时,该合金的热导率降低到160w/m*k。
6.对于设计成从传热介质散热的热交换器部件,在高达200℃的温度范围内操作,需要具有较高热导率系数的材料,同时材料的强度特性应与中等强度铝合金的强度特性匹配。
7.铝合金是已知的(jp2008308760a,公布于2008年12月25日),其包含以下组分(wt%):
8.硅:0.3至1.2;
9.铁:0.7至2.0;
10.锰:0.2至0.8;
11.锌:0.1至1.0;
12.钪:0.0001至1.0;
13.铜:0.05至0.8;
14.镁:0.01至0.05;
15.锆:0.001至0.3;
16.钛:0.01至0.25;
17.铬:0.01至0.1;
18.钒:0.01至0.1;
19.铝:余量。
20.该合金的足够强度尤其通过添加各种元素的固溶强化等来实现。但是,固溶体中的大量元素导致热导率系数显著降低至160w/m*k。
21.已知一种铝-锰合金(jp2004176091a,公布于2004年6月24日),其含有以下组分(wt%):
22.锰:2.0至3.0;
23.硅:0.8至1.5;
24.铁:0.05至0.4;
25.锌:0.1至3.0;
26.镍:0.01至1.0;
27.锆:0.01至0.3;
28.钛:0.01至0.30;
29.铟:0.001至0.2;
30.锡:0.01至0.5;
31.铝:余量。
32.该合金设计用于汽车热交换器中,并具有良好的热导率。然而,这种合金的主要缺点是其强度特性不够高(σb=145mpa),因此不能将其考虑为航空航天工业的热交换器材料。此外,该合金含有锌,锌具有高蒸气压,因此该合金在slm过程中部分损失,结果,其强度性能将降低。
33.已知一种铝-铁合金(jp5301750b1,公布于2013年9月25日),其含有以下组分(wt%):
34.铜:0.00至2.30;
35.铁:1.20至2.60;
36.硅:0.00至1.50;
37.该合金的优点包括其高热导率,同时保持中等强度铝合金的强度特性。这种合金的主要缺点是当使用slm方法生产产品时其加工性低,这是由于具有这种含量的合金元素的宽凝固范围。此外,合金的高铁和铜含量对材料的耐腐蚀性具有负面影响,这显著降低了由该合金制成的部件在腐蚀环境中的使用寿命。
38.已知一种铝-镁-硅合金(ru2014110911a,公布于2015年9月27日),其含有以下组分(wt%):
39.硅:1.0至4.0;
40.镁:1.7至8.0;
41.钪:0.1至0.5;
42.钴:0.3至0.6;
43.钛/锆:0.2至1.2;
44.铁(最大):0.4;
45.铝:余量。
46.由于固溶和沉淀强化,该合金具有高机械特性。该合金的主要缺点是其高镁含量,这损害了slm过程中合金的可加工性,因为它会由于slm过程中的熔渣而导致熔融材料的化学组成与原始粉末相比发生变化。此外,该合金具有低的可铸性,这增加了slm过程中由于热应力导致的缺陷的可能性,导致熔化过程中的热裂纹。该合金还含有钪,一种昂贵的合金元素,其降低了合金的经济可行性。
47.已知一种铝-硅-铜合金(de112004001160b4,公布于2008年1月10日),其含有以下组分(wt%):
48.硅:11.25至11.75;
49.铁:0.35至0.65;
50.铜:1.75至2.75;
51.镁:0.15至0.3;
52.锰:0.42至1.2;
53.锌:最大0.5;
54.钛:最大0.2;
55.锶:0.01至0.03;
56.锰/铁比例为1.2/1.75。
57.该合金的机械特性与中强度铝合金(310mpa)相当。由于合金中存在大于1wt%的铜,合金具有点蚀腐蚀的趋势。此外,合金的总体高合金化性质导致其热导率的显著降低。
58.已知一种铝-镁-硅合金(ep1167560a1,公布于2002年1月2日),其含有以下组分(wt%):
59.镁:1.0至2.6;
60.硅:0.5至2.0;
61.铁(最大):0.5;
62.铜(最大):1.0;
63.锌(最大):0.30;
64.钛(最大):0.20;
65.铍(最大):0.003。
66.该合金具有低的机械特性(铸造时的拉伸强度:230mpa,屈服强度:140mpa),这是由于与确保弥散强化的元素的合金化不足。
67.已知一种铝-硅-铜合金(us8758529b2,公布于2014年6月24日),其含有以下组分(wt%):
68.硅:0.5至14;
69.铜:0.25至2.0;
70.镍:0.1至3.0;
71.铁:0.1至1.0;
72.锌:0.1至2.0;
73.镁:0.1至1.0;
74.银:0至1.0;
75.锶:0至0.2;
76.锰:0至1.0;
77.钙:0至0.5;
78.锗:0至0.5;
79.锡:0至0.5;
80.钴:0至0.5;
81.钛:0至0.2;
82.硼:0至0.1;
83.镉:0至0.3;
84.铬:0至0.3;
85.铟:0至0.5;
86.和至少一种以下元素:
87.钪:0至0.1;
88.锆:0.1至0.2;
89.钇:0.25至0.5。
90.该合金具有高机械特性,这通过两种强化类型来确保:固溶和沉淀强化。然而,这种合金的缺点是其低热导率,这是由于固溶体的高合金化性质和热处理期间释放的大量相。该合金中的高铜含量是该合金的另一个主要缺点,因为它使材料易于点蚀。
91.铝基合金(us20050106410a1,公布于2005年5月19日)最接近要求保护的铝基合金;其含有以下元素(wt%):
92.硅:0.1至1.5;
93.铁:0.1至0.6;
94.铜:0.0至1.0;
95.镁:0.0至0.4;
96.锰:0.7至1.8;
97.锌:0.1至3.0;
98.钛:0.0至0.3;
99.锆:0.0至0.3;
100.铝:余量。
101.这种合金的缺点是其机械特性低(极限拉伸强度:204mpa,屈服强度:190mpa)。该合金的另一个缺点是其锌含量,因为锌由于其高蒸气压而易于在slm过程中损失。在镁和铁存在下的锰含量可导致形成板状al6(mn,fe)相,这显著降低了热导率。另一个缺点是合金组合物中存在铜,这增加了合金结晶间隔并导致slm过程中的热裂。
技术实现要素:
102.本发明的技术问题是开发一种铝粉末材料,其具有与中等强度铝合金相应的高热
导率和机械特性,用于通过增材技术生产热交换器和散热器的部件,同时确保在熔融材料中没有热裂纹和大孔。
103.技术效果是增加铝合金的热导率特性并提高强度特性,以能够使用增材生产技术生产部件。
104.通过提出一种新的铝粉末材料解决了这个问题并获得了结果,所述铝粉末材料含有以下比例(wt%)的元素:
105.硅:2.00至6.00;
106.铁:0.10至0.50;
107.镁:0.10至0.80;
108.锆:0.10至0.40;
109.铜:最大0.02;
110.锰:最大0.02;
111.钛(最大):0.02;
112.铝和不可避免的杂质:余量。
113.硅、镁和铁含量的以下比例将是适当的:si≥mg*6.5+fe*5。
114.我们还提供了使用增材技术由上述铝粉末材料生产的制品,其具有超过290mpa的极限拉伸强度和超过210mpa的拉伸屈服强度,超过8%的伸长率和超过190w/m*k的热导率。
115.可以使用以下技术生产粉末:
[0116]-通过控制所需的化学组成来制备铝基熔体;
[0117]-精炼所述铝熔体并过热到液相线温度以上至少100℃;
[0118]-用氮气、氩气或其混合物对铝熔体进行气体雾化;
[0119]-分离所需的粉末级分。
[0120]
硅含量的选择基于对材料的高可铸性的需要,以确保在使用slm方法制造产品时的可加工性,并确保材料的足够水平的热导率。
[0121]
镁添加剂通过在热处理强化期间形成mg2si相而提高合金强度。
[0122]
铁合金化有助于形成基于铝、硅和铁的不溶性金属间夹杂物,这确保了额外的强化并提高了合金的热稳定性,并且还有助于通过合金化元素消耗铝基体,这导致热导率提高。
[0123]
在进行热处理时,在过饱和固溶体分解期间,引入锆以形成细分散的al3zr相。锆在铝基体中具有低扩散系数,这导致在高温老化期间形成纳米级相,由于它们的尺寸而对热导率具有很小的影响。由于该相与铝基体粘结,因此可以实现强的强化效果。选择锆含量以避免在熔融材料中形成大的金属间化合物,其将导致强化效果和热导率的显著降低。
[0124]
实验意外地显示,合金中铁、硅和镁的比例si≥mg*6.5+fe*5确保了打印材料的强度、延展性和热导率的最佳组合。合金元素的这种比例确保了有最佳的强化相量和最佳的固溶体组成。如果镁和铁含量过高,由于固溶体中过量的铁和镁,材料具有较低的伸长率和屈服强度,这也有助于降低材料的热导率。
[0125]
下面的实例1显示了当满足该比例时的合金性能;实例2表示在si《mg*6.5+fe*5下的材料研究结果。
[0126]
所提出的合金具有有限含量的锰、铜和钛。为了形成锰基金属间相,需要高温处
理。
[0127]
高温处理将降低mg2si和al3zr由于它们的生长而产生的强化效应,这将不利地影响合金的热导率和强度特性。
[0128]
含铁铝合金中存在锰的另一个缺点是形成粗糙的非球形相(mnfe)al6(在热处理期间),这对热导率有负面影响。
[0129]
限制合金中铜和钛含量的上限以便缩小合金的凝固范围。另外,钛含量被限制以便不显著降低合金的热导率。
附图说明
[0130]
图1:本发明实施例1中通过将熔体雾化到气流中获得的所提出合金的组成2、3、4和6的粉末颗粒。
[0131]
图2:选区激光熔化过程和熔合样品的外观。
[0132]
图3:来自发明实施例1的样品组合物2、3、4和6的结构图像。
具体实施方式
[0133]
通过以下实例解释所提出的发明。
[0134]
实例1
[0135]
合金按以下顺序制备:
[0136]
将铝熔化并加热至800-810℃的温度。然后将其与晶体硅合金化。在720-740℃下,以fe80f20片剂(80%fe,20%助熔剂)形式引入铁。
[0137]
然后将熔体加热至780℃。加入al15zr母合金,随后保温1小时,同时每15至20分钟搅拌一次。
[0138]
在浸泡之后,除去炉渣。在除去熔渣之后,光卤石熔剂以2kg/t的速率装载到熔体表面上。在熔剂熔化之后,将镁注入熔剂层下面。
[0139]
镁注入后浸泡60分钟,同时每15分钟搅拌一次。
[0140]
在浸泡之后,将炉渣从熔体表面移除,并且取样以控制化学组成。
[0141]
通过喷嘴雾化熔体制备球形粉末。使用氮气-氧气混合物作为雾化气体,其中混合物中的氧气含量不超过0.8vol%。
[0142]
对所得粉碎体积进行气动分离和筛分,以分离出20-63μm的目标级分。
[0143]
结果,制得具有表1所示化学组成的粉末。
[0144]
表1
[0145]
[0146][0147]
所得粉末用于通过slm制备样品。为了制备样品,使用eos m290 slm打印机。通过在220-350w范围内改变激光功率和450-1,000mm/s的扫描速度来制备样品。
[0148]
通过定性和定量金相学确定获得的样品的质量。这些抛光样品使用标准技术生产;用倒置金相显微镜分析未涂覆表面上的显微组织。
[0149]
为了测定强度和热导率特性,将样品坯熔融。根据gost 1497-84加工熔融的样品坯。使用lfa 467装置使用激光闪光方法测定热导率。根据gost1497-84进行拉伸试验。
[0150]
在300℃下老化1小时后分析样品。结果列于表2。
[0151]
表2
[0152][0153]
该材料的特征在于与原型相比热导率增加23%和拉伸强度增加41%。
[0154]
与原型相比,具有所提出的化学组成的铝粉末材料具有增加的热导率、拉伸强度和屈服强度。
[0155]
实例2
[0156]
表3所示化学组成的铝合金粉末是用实例1所述的方法制备的。合金中的硅、铁和镁的比例不同。
[0157]
表3
[0158][0159]
为了制备样品,使用eos m290 slm单元。将熔融样品(长80mm、直径12mm的圆柱体)加工成样品,用于根据gost1497-84的拉伸试验,以及用于热导率试验。使用lfa 467装置使用激光闪光方法在圆形样品上测定热导率。根据gost1497-84进行拉伸试验。在300℃下老化45分钟后分析样品。
[0160]
表4显示了热处理后根据gost 1497-84的化学组成根据表3的样品的拉伸试验结果和热处理前后热导率分析的结果。
[0161]
表4
[0162][0163]
因此,与原型相比,具有所提出的化学组成的铝粉末材料具有增加的热导率、拉伸强度和屈服强度。
[0164]
mg2si和al3zr分散质以及基于铁、铝和硅的多组分夹杂物的形成改善了合金的强度特性。通过降低固溶体浓度并形成小圆形夹杂物来进行热处理(时效处理)使得热导率增加。但是,si《mg*6.5+fe*5时,由于铝基体中的mg、fe含量高,因此与具有表1所示的化学组成且相当于si≥mg*6.5+fe*5的合金相比,其特性较低。
[0165]
因此,本发明提供了一种铝合金的改进的强度和热导率特性,该铝合金用于使用增材技术生产部件,同时保持高伸长率。
技术特征:
1.一种用于使用增材技术生产部件的铝粉末材料,所述部件具有改善的强度和热导率特性,同时保持高伸长率,所述铝粉末材料包含硅、铁、镁和锆,具有以下组分比例(wt%):硅:2.00至5.00;铁:0.10至0.50;镁:0.10至0.80;锆:0.10至0.40;铜:最大0.02;锰:最大0.02;钛:最大0.02;铝和不可避免的杂质:余量,合金中硅、铁、镁的比例符合si≥mg*6.5+fe*5条件。2.根据权利要求1所述的铝粉末材料产品,其具有超过290mpa的拉伸强度、超过210mpa的屈服强度,超过8%的伸长率和超过190w/m*k的热导率。
技术总结
本发明涉及冶金领域,并且更具体地涉及一种基于铝合金的粉末材料,其用于通过包括选区激光熔化的增材技术来生产部件。提出了一种含硅、铁、镁、锆的铝粉末材料,其中Si≥Mg*6.5+Fe*5条件。技术结果是增加了用于通过包括增材技术的粉末技术生产部件的铝合金的强度和热导率特性,同时保持了与中等强度铝合金相应的强度特性。强度特性。
技术研发人员:维克托
受保护的技术使用者:轻材料与技术研究所有限责任公司
技术研发日:2021.11.26
技术公布日:2023/9/9
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/
上一篇:热塑性树脂组合物和由其制造的模制品的制作方法 下一篇:Q开关CO2激光器的制作方法