一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶及其制备方法和应用
未命名
09-15
阅读:119
评论:0

1.本发明属于高分子材料技术领域,特别涉及一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶及其制备方法和应用。
背景技术:
2.近年来,运动健康随身监测的理念愈发受到人们的欢迎,智能终端概念在人们日常生活中已经随处可见,柔性智能可穿戴器件由于微型、柔软及可穿戴等特点受到了研究学者的广泛关注与研究,其中,柔性压阻式应变传感器是一类通过将外界信号(如生理/运动信号)转化成电学信号进行输出的传感器件,在人体运动健康监测、软体机器人等领域具有潜在应用。
3.水凝胶是以溶剂小分子和聚合物分子网络等通过物理交联或化学交联作用所形成,是一类亲水性极强的三维网络结构材料,同时具备固体和液体的特性,性能类似于生物软组织,具有良好的柔韧性以及生物相容性,自1894年出现以来深受研究学者们的关注。导电水凝胶结合了水凝胶柔软特性和导电高分子的电化学特性,由于柔性水凝胶具备良好的柔性、高拉伸性以及生物相容性等特点,被认为是柔性应变传感器中倍有前景的材料。
4.淀粉是一种来源广泛、成本低廉可降解的可再生高分子,由结晶区和无定形区交替形成,其自身分子间和分子内氢键作用太强而难溶于传统溶剂如水,纯淀粉水凝胶不仅吸湿溶胀性能过强而导致机械性能较差,而且在低温下表现出脆性特点。聚乙烯醇是一种易于加工、可生物降解的水溶性聚合物高分子材料,但是成本较高且降解速率有限,淀粉和聚乙烯醇形成的复合水凝胶虽然可以在一定程度上改善单一组分的缺点,但是其半结晶结构限制了二者的相容性,结晶结构对于导电性能具有阻碍作用,虽然醇类溶剂如甘油、乙二醇等增塑剂被证明在改善淀粉和聚乙烯醇的相容性上有所帮助,但是依旧相容效果有限,且形成的水凝胶导电性能差而极大限制了其应用范围。因此,如何在进一步有效改善淀粉/聚乙烯醇水凝胶的相容性以提高其机械性能和导电性能的同时,仍可对宽范围应变信号做出精准线性响应是淀粉/聚乙烯醇水凝胶应变传感器的关键问题,此外还需解决水凝胶在低温环境中使用受限的问题。
技术实现要素:
5.本发明所要解决的技术问题是提供一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶及其制备方法和应用,该复合水凝胶在柔性传感应用中具有宽应变范围高传感灵敏特性。
6.本发明提供了一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶,利用离子液体复配乙二醇和水作为三元低共熔溶剂系统,以聚乙烯醇和淀粉作为水凝胶复合骨架,通过冻融循环进行物理交联而得。
7.优选的,所述离子液体为1-烯丙基-3-甲基咪唑氯盐([amim]cl)。在本发明中,离
子液体不仅增加水凝胶体系的导电性能,并且复配乙二醇和水的混合溶剂改善体系聚合物间的相容性,增加体系内交联作用,大大提高水凝胶的机械性能并赋予保湿抗冻等附加性能。
[0008]
优选的,所述淀粉为玉米淀粉。
[0009]
本发明还提供了一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶的制备方法,包括如下步骤:
[0010]
(1)制备质量浓度为1-10wt%的淀粉水溶液,在80-90℃油浴加热条件下进行初步预糊化;
[0011]
(2)在淀粉水溶液加入离子液体和乙二醇,常温搅拌混合5-15min;
[0012]
(3)在上述溶液中按质量浓度10-15wt%加入聚乙烯醇pva颗粒,常温搅拌溶胀20-40min后,90-95℃条件下加热搅拌2-3h,使得材料充分溶解混合,得到水凝胶前驱体溶液;
[0013]
(4)将水凝胶前体溶液倒入模具中,在冰箱中进行冻融循环,最后得到淀粉/离子液体/聚乙烯醇高性能复合水凝胶。
[0014]
所述步骤(2)中的离子液体和乙二醇的质量比为1:9-9:1。
[0015]
所述步骤(2)中的淀粉与(离子液体和乙二醇)的质量比为0.2:10-2:10。
[0016]
所述步骤(4)中的冻融循环为在-20℃和20℃环境下进行多次冻融循环。
[0017]
所述步骤(2)中常温搅拌转速为300r/min;所述步骤(3)中加热搅拌转速为400r/min。
[0018]
本发明还提供了一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶在柔性可穿戴多功能传感器中的应用。
[0019]
本发明利用离子液体复配乙二醇和水作为三元低共熔溶剂系统,咪唑基离子液体作为氢键受体,乙二醇作为氢键第一供体,去离子水在降低体系粘度的同时充当第二个氢键供体,大大改善聚乙烯醇和淀粉两种半结晶聚合物的相容性,增强水凝胶体系中的交联作用,从而提高聚乙烯醇/淀粉水凝胶的机械力学性能,离子液体在水凝胶体系中发挥多重作用,在赋予水凝胶优异导电性能的同时,复配所得的三元低共熔溶剂体系使得水凝胶兼具低温抗冻性及防干高保湿等附加性能,制得的离子水凝胶在柔性传感应用中具有宽应变范围高传感灵敏特性。
[0020]
本发明双网络水凝胶中的双网络结构是指淀粉大分子网络和pva物理网络:第一层为淀粉大分子网络,但是淀粉单层网络水凝胶材料的力学性能较差,难以满足工业生产的需求,通过引入第二层pva物理网络进行氢键缔合,利用多重强弱氢键的协同作用增强凝胶网络结构的交联方式,以淀粉/聚乙烯醇双网络水凝胶作为基体支撑材料。
[0021]
有益效果
[0022]
1、本发明制备方法简单环保,对环境绿色无污染,材料来源丰富;
[0023]
2、本发明制备的水凝胶体系内的咪唑基离子液体复配乙二醇和水作为三元低共熔溶剂系统使得淀粉和聚乙烯醇具有高度相容性(水凝胶体系结晶度低至9.89%),使得淀粉/聚乙烯醇基水凝胶的力学性能得到了很大提升(断裂伸长率高达1250.29%,拉伸强度增至1324.43kpa)。
[0024]
3、本发明中咪唑基离子液体的引入发挥了多重作用,不仅增强淀粉/聚乙烯醇基水凝胶机械性能,而且与乙二醇协同作用赋予水凝胶导电、低温抗冻、抗溶胀高保湿(失重
率约17%)等优异附加性能,极大拓宽了其应用范围。
[0025]
4、本发明制备的水凝胶具有超宽应变范围传感性能,可以在宽应变范围内稳定检测出人体关节运动信号,在人体健康监测方面具有潜在应用。
附图说明
[0026]
图1为未添加乙二醇和添加乙二醇的淀粉/聚乙烯醇水凝胶拉伸曲线。
[0027]
图2为不同离子液体/乙二醇质量比的淀粉/离子液体/聚乙烯醇高性能复合水凝胶的拉伸曲线。
[0028]
图3为淀粉/离子液体/聚乙烯醇高性能复合水凝胶的x-射线衍射图和结晶度。
[0029]
图4为淀粉/离子液体/聚乙烯醇高性能复合水凝胶的结晶度对比图。
[0030]
图5为淀粉/离子液体/聚乙烯醇高性能复合水凝胶的失水曲线图。
[0031]
图6为淀粉/离子液体/聚乙烯醇高性能复合水凝胶冷冻图示。
[0032]
图7为淀粉/离子液体/聚乙烯醇高性能复合水凝胶的应变传感曲线。
[0033]
图8为淀粉/离子液体/聚乙烯醇高性能复合水凝胶检测人体手指关节运动的信号图。
具体实施方式
[0034]
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本技术所附权利要求书所限定的范围。
[0035]
对比例1
[0036]
称取0.25g玉米淀粉分散于5g去离子水中,在80℃油浴加热条件下进行初步预糊化,再加入0.5g pva颗粒,常温搅拌溶胀30min,溶胀后在95℃条件下加热搅拌3h,得到水凝胶前驱液,将混合溶液倒入聚四氟乙烯模具中,冰箱-20℃冷冻16h,在室温下解冻8h,循环冷冻-解冻三次,最终得到淀粉/聚乙烯醇(sp)水凝胶。
[0037]
对比例2
[0038]
称取0.5275g淀粉分散于5g去离子水中,在80℃油浴加热条件下进行初步预糊化,在加入5.55g乙二醇,常温搅拌混合15min后加入1.055g pva颗粒,常温搅拌溶胀30min,溶胀后在95℃条件下加热搅拌3h,得到水凝胶前驱液,将混合溶液倒入聚四氟乙烯模具中,冰箱-20℃冷冻16h,在室温下解冻8h,循环冷冻-解冻三次,最终得到添加乙二醇不添加离子液体的淀粉/聚乙烯醇(sep或sa0e
10
p)复合水凝胶。
[0039]
实施例1
[0040]
称取0.5275g淀粉分散于5g去离子水中,在80℃油浴加热条件下进行初步预糊化,在加入0.555g离子液体和4.995g乙二醇,常温搅拌混合15min后加入1.055g pva颗粒,常温搅拌溶胀30min,溶胀后在95℃条件下加热搅拌3h,得到水凝胶前驱液,将混合溶液倒入聚四氟乙烯模具中,冰箱-20℃冷冻16h,在室温下解冻8h,循环冷冻-解冻三次,最终得到淀粉/离子液体/聚乙烯醇(sa1e9p)高性能复合水凝胶。
[0041]
实施例2
[0042]
称取0.5275g淀粉分散于5g去离子水中,在80℃油浴加热条件下进行初步预糊化,在加入1.11g离子液体和4.44g乙二醇,常温搅拌混合15min后加入1.055g pva颗粒,常温搅拌溶胀30min,溶胀后在95℃条件下加热搅拌3h,得到水凝胶前驱液,将混合溶液倒入聚四氟乙烯模具中,冰箱-20℃冷冻16h,在室温下解冻8h,循环冷冻-解冻三次,最终得到淀粉/离子液体/聚乙烯醇(sa2e8p/saep)高性能复合水凝胶。
[0043]
实施例3
[0044]
称取0.5275g淀粉分散于5g去离子水中,在80℃油浴加热条件下进行初步预糊化,在加入1.665g离子液体和3.885g乙二醇,常温搅拌混合15min后加入1.055g pva颗粒,常温搅拌溶胀30min,溶胀后在95℃条件下加热搅拌3h,得到水凝胶前驱液,将混合溶液倒入聚四氟乙烯模具中,冰箱-20℃冷冻16h,在室温下解冻8h,循环冷冻-解冻三次,最终得到淀粉/离子液体/聚乙烯醇(sa3e7p)高性能复合水凝胶.
[0045]
实施例4
[0046]
称取0.5275g淀粉分散于5g去离子水中,在80℃油浴加热条件下进行初步预糊化,在加入2.22g离子液体和3.33g乙二醇,常温搅拌混合15min后加入1.055g pva颗粒,常温搅拌溶胀30min,溶胀后在95℃条件下加热搅拌3h,得到水凝胶前驱液,将混合溶液倒入聚四氟乙烯模具中,冰箱-20℃冷冻16h,在室温下解冻8h,循环冷冻-解冻三次,最终得到淀粉/离子液体/聚乙烯醇(sa4e6p)高性能复合水凝胶。
[0047]
实施例5
[0048]
称取0.5275g淀粉分散于5g去离子水中,在80℃油浴加热条件下进行初步预糊化,在加入2.775g离子液体和2.775g乙二醇,常温搅拌混合15min后加入1.055g pva颗粒,常温搅拌溶胀30min,溶胀后在95℃条件下加热搅拌3h,得到水凝胶前驱液,将混合溶液倒入聚四氟乙烯模具中,冰箱-20℃冷冻16h,在室温下解冻8h,循环冷冻-解冻三次,最终得到淀粉/离子液体/聚乙烯醇(sa5e5p)高性能复合水凝胶。
[0049]
淀粉/离子液体/聚乙烯醇高性能复合水凝胶性能分析:
[0050]
(1)将标准哑铃型水凝胶样品固定在万能拉伸试验机上,控制拉伸速率为100mm/min,检测其力学性能。如图1所示为对比例1和对比例2的水凝胶拉伸应力-应变曲线,乙二醇的加入使得水凝胶力学性能得到明显增强,sep水凝胶的断裂伸长率和拉伸强度从sp水凝胶的411.13%和289.18kpa增加至613.24%和654.63kpa,这主要是乙二醇起到的增塑剂作用。
[0051]
(2)图2为不同乙二醇/离子液体含量的淀粉/离子液体/聚乙烯醇高性能复合水凝胶拉伸曲线。随着离子液体的增加,淀粉/离子液体/聚乙烯醇水凝胶的断裂伸长率和拉伸强度也随之增加,这可能是由于体系间的相互作用增强,水凝胶的交联密度和网络结构逐渐达到最优,实施例2的水凝胶具有优异的机械性能,断裂伸长率高达1250.29%,拉伸强度也增至1324.43kpa。而随着离子液体的进一步增加,淀粉/离子液体/聚乙烯醇水凝胶的机械性能表现出下降趋势,这可能是水凝胶体系中交联程度过大导致。
[0052]
(3)利用x-射线衍射研究淀粉/离子液体/聚乙烯醇高性能复合水凝胶的结晶度,如图3,可以发现,乙二醇可以在一定程度上破坏聚乙烯醇的半结晶结构以及淀粉固有的a型晶体结构,而加入离子液体后淀粉/聚乙烯醇的结晶结构进一步被显著破坏,表现出更弱的衍射峰而出现弥散型峰形,如图4所示,淀粉和聚乙烯醇本身具有较高的结晶度,由于二
者皆为半结晶物质,相容性有限,乙二醇的加入降低了体系的结晶度,而离子液体进一步破坏了淀粉和聚乙烯醇的结晶结构,增加了二者的相容性,淀粉/离子液体/聚乙烯醇水凝胶体系结晶度低至9.89%,这可能是由于咪唑基离子通过与淀粉和聚乙烯醇分子链形成了新的交联作用而抑制了淀粉的回生以及淀粉/聚乙烯醇的结晶。
[0053]
(4)将实施例2中的淀粉/离子液体/聚乙烯醇高性能复合水凝胶以及对比例1中未含有离子液体/乙二醇溶剂的淀粉/聚乙烯醇水凝胶用滤纸吸除表面的残余水分后进行称重,得到初始质量w0,在恒温恒湿条件下放置20天,每天同一时间进行称重,第i天失水后质量wi,水凝胶失水率为(w0-wi)/w0
×
100%。如图5所示,相同储存时间下,离子液体/乙二醇/水三元低共熔溶剂的淀粉/离子液体/聚乙烯醇高性能复合水凝胶失水更少,20天后仍然保持了约83%重量。此外,将含有离子液体/乙二醇/水三元低共熔溶剂以及未含有离子液体/乙二醇溶剂的水凝胶利用dsc测试其冷冻温度,如图6所示,实施例2的冷冻温度可低至-128.9℃,证明其在低温下仍可表现出优异的抗冻行为。
[0054]
(5)将实施例2中的水凝胶固定在万能拉伸试验机上,拉伸速度为100mm/min,铜片做电极,与上海辰华电化学工作站chi660e联用,实施记录水凝胶随拉伸应变产生的电阻变化,计算应变传感器的灵敏度gf=(r-r0/r0)/ε(即曲线斜率)。如图7所示,实施例2中的淀粉/离子液体/聚乙烯醇高性能复合水凝胶表现出超宽范围的应变敏感性,在0-55%、55%-250%、250%-650%、650%-1000%的应变灵敏度分别为0.99、2.19、2.49和3.28,且电阻信号变化平稳具有高线性。
[0055]
(6)将实施例2所得水凝胶组装所得应变传感贴片应用于人体手指关节部位进行运动信号检测,图8所示可以发现,在不同手指弯曲角度下相对电阻变化率表现出明显差异性变化,表明该水凝胶可以有效作为柔性可穿戴应变传感器件,在运动健康监测领域进行应用。
技术特征:
1.一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶,其特征在于:利用离子液体复配乙二醇和水作为三元低共熔溶剂系统,以聚乙烯醇和淀粉作为水凝胶复合骨架,通过冻融循环进行物理交联而得。2.根据权利要求1所述的复合水凝胶,其特征在于:所述离子液体为1-烯丙基-3-甲基咪唑氯盐。3.根据权利要求1所述的复合水凝胶,其特征在于:所述淀粉为玉米淀粉。4.一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶的制备方法,包括如下步骤:(1)制备质量浓度为1-10wt%的淀粉水溶液,在80-90℃油浴加热条件下进行初步预糊化;(2)在淀粉水溶液加入离子液体和乙二醇,常温搅拌混合5-15min;(3)在上述溶液中按质量浓度10-15wt%加入聚乙烯醇pva颗粒,常温搅拌溶胀20-40min后,90-95℃条件下加热搅拌2-3h,使得材料充分溶解混合,得到水凝胶前驱体溶液;(4)将水凝胶前体溶液倒入模具中,在冰箱中进行冻融循环,最后得到淀粉/离子液体/聚乙烯醇高性能复合水凝胶。5.根据权利要求4所述的制备方法,其特征在于:所述步骤(2)中的离子液体和乙二醇的质量比为1:9-9:1。6.根据权利要求4所述的制备方法,其特征在于:所述步骤(2)中的淀粉与(离子液体和乙二醇)的质量比为0.2:10-2:10。7.根据权利要求4所述的制备方法,其特征在于:所述步骤(4)中的冻融循环为在-20℃和20℃环境下进行多次冻融循环。8.根据权利要求4所述的制备方法,其特征在于:所述步骤(2)中常温搅拌转速为300r/min;所述步骤(3)中加热搅拌转速为400r/min。9.一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶在柔性可穿戴多功能传感器中的应用。
技术总结
本发明涉及一种淀粉/离子液体/聚乙烯醇高性能复合水凝胶及其制备方法和应用,利用离子液体复配乙二醇和水作为三元低共熔溶剂系统,以聚乙烯醇和淀粉作为水凝胶复合骨架,通过冻融循环进行物理交联而得高性能复合水凝胶。本发明以聚乙烯醇和淀粉复配作为双网络水凝胶支撑材料,利用三元低共熔溶剂体系改善双网络水凝胶内部材料相容性,调控水凝胶力电性能,并赋予水凝胶高保湿、抗冻等附加性能,拓展其应用范围,组建传感器等柔性电子器件用于人体运动健康监测。体运动健康监测。体运动健康监测。
技术研发人员:刘丽芳 徐秋玉 刘蕴莹 候茉晗 李萌萌 王丽芳 张学澎
受保护的技术使用者:东华大学
技术研发日:2023.06.25
技术公布日:2023/9/13
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/