一种高透明聚乙烯热收缩膜及其制备方法与流程

未命名 09-15 阅读:81 评论:0


1.本技术涉及包装薄膜技术领域,更具体地说,它涉及一种高透明聚乙烯热收缩膜及其制备方法。


背景技术:

2.商品包装要求具有防护、保质、美化商品的作用,随着市场经济的发展和生活水平的提高,人们对于商品包装的要求也越来越高,随之涌现出各式各样的新颖包装材料。
3.热收缩膜俗称收缩膜,是一种受热能发生大幅度收缩,因而能紧裹物品,并能长期保持其形状的薄膜。热收缩膜作为一种新颖的包装材料,其具有以下优点:加工成型性好,热稳定性和耐候性优异,使用方便、安全卫生,同时热收缩膜包装的商品可以做到贴体包装,使得商品美观耐看,被广泛应用酒类、易拉罐类、矿泉水类、各种饮料类、肉类等产品的贴体包装,热收缩膜的柔韧性好、抗撞击、抗撕裂性强、不易破损、不怕潮、收缩率大。
4.目前市场上大部分聚乙烯热收缩膜单独使用高压聚乙烯或高密度聚乙烯和高压聚乙烯共混来加工成产,虽然热收缩膜具有较好的收缩性和力学性能,但薄膜制品厚度较大,通常在100μm以上,同时薄膜的透明度差,薄膜发花或发白,影响货物包装后的外观,且韧性下降。


技术实现要素:

5.为了降低薄膜厚度,提高热收缩膜的透明度和韧性,本技术提供一种高透明度聚乙烯热收缩膜及其制备方法。
6.第一方面,本技术提供一种高透明聚乙烯热收缩膜,采用如下的技术方案:一种高透明聚乙烯热收缩膜,包括内层、中层和外层,其特征在于,所述内层和外层均包括以下重量份的原料:450-650份ldpe、100-350份mlldpe、0-500份hdpe、0-5份开口剂和4-8份ppa助剂;所述中层包括以下重量份的原料:450-600份ldpe、100-200份mlldpe、200-500份lldpe或hdpe、8-12份开口剂和4-8份ppa助剂。
7.通过采用上述技术方案,热收缩膜分为外层、中层和内层,可以增加热收缩膜的结构强度,为热收缩膜提供其必须的抗冲击能力,以维持其正常使用,ldpe即为低密度聚乙烯,其适合热塑成型,可以为内层、中层和外层带来更好的成型加工性和热塑性,mlldpe能提高热收缩膜的韧性,减少破裂情况的发生,且mlldpe具有高强度、高光滑性、高清晰度和高抗结块性,与ldpe和hdpe配合使用,可以改善热收缩膜的透明度;ppa助剂能减少表面缺陷,如熔体破裂等,提高产品光亮度和光滑度,使薄膜更有光泽度,减少加工过程中对模具的损耗,消除口模积料现象,减少挤出过程中产生的凝胶,降低加工温度、延长连续加工时间,提高挤出速度,提高产品的成型率及尺寸稳定性,降低废品率。
8.可选的,所述内层和外层均包括以下重量份的原料:550-650份ldpe、200-350份mlldpe、3-5开口剂、5-8份ppa助剂;所述中层包括以下重量份的原料:500-600份ldpe、150-200份mlldpe、200-250份
lldpe、8-10份开口剂、4-6份ppa助剂。
9.通过采用上述技术方案,在外层、内层和中层内均为添加低压料hdpe,降低热收缩膜的整体密度,从而改善热收缩膜的透明度,降低厚度,且mlldpe是高透明度、低雾度树脂,具抗冲击能力强、耐穿刺和柔韧性好的优点,能够提高热收缩膜的透明度,使热收缩膜在厚度降低的情况下,仍具有较强的耐拉伸性、韧性和收缩性,中层内添加的lldpe是乙烯与少量高级α-烯烃在催化剂存在下聚合而成的共聚物,lldpe外观与ldpe相似,表面光泽度好,具有低温韧性、高模量、抗弯曲和耐应力开裂性。
10.可选的,所述内层和外层均包括以下重量份的原料:450-600份ldpe、100-200份mlldpe、450-500份hdpe、5-8份ppa助剂;所述中层包括以下重量份的原料:450-550份ldpe、100-150份mlldpe、450-500份hdpe、5-8份ppa助剂。
11.通过采用上述技术方案,以上用量的原料,使制成的热收缩膜的力学强度高、透明度大。
12.可选的,所述hdpe包括质量比为1:0.4-0.5的1号hdpe和2号hdpe,1号hdpe的熔融指数为9-9.5g/10min、密度为0.95-0.952g/cm3,2号hdpe的熔融指数为0.3-0.35g/10min、密度为0.95-0.959g/cm3。
13.通过采用上述技术方案,以上密度和熔融指数的1号hdpe具有热稳定性好、硬度高和冲击强度好的特点,2号hdpe具有高刚性,采用2种不同熔指和密度的hdpe,能进一步改善热收缩膜的收缩率和力学性能。
14.可选的,所述ldpe选自密度为0.92-0.922g/cm3,熔融指数为0.3-0.33g/10min的a料和密度为0.922-0.9225g/cm3,熔融指数为0.23-0.25g/10min的b料中的一种。
15.通过采用上述技术方案,a料具有高强度和中等光学特性,其雾度为11.2%,但具有较高的断裂拉伸强度和断裂伸长率,b料具有高透明、高流动、高抗撕裂性,能为热收缩膜提供较高的拉伸强度和洁净度,且分子链的总体支化数达到12个/1000c以上,长链支化度较高,透明性好,制成的热收缩膜力学性能优良、收缩性高。
16.可选的,所述mlldpe为密度为0.93-0.935g/cm3,熔融指数为0.45-0.5g/10min的i号料或密度为0.918-0.92g/cm3,熔融指数为0.45-0.5g/10min的ii号料。
17.通过采用上述技术方案,i号料和ii号料的熔融指数均较低,熔融指数低,mlldpe的相对分子质量越大,分子间缠结点越多,收缩性越好,用其制成的薄膜耐撕裂性、抗冲击强度和热收缩率越强;以上密度和熔融指数的i号料具有优异的韧性和出色的光学特性,能为不同树脂在加工和膜性能之间提供优异的平衡,包括拉伸性、抗冲击性和耐穿刺性,具有显著的韧性改善效果;ii号料的透明度好,具有优异的耐环境应力开裂性和抗冲击、耐穿刺性。
18.可选的,所述lldpe的密度为0.919-0.920g/cm3,熔融指数为1-30g/g/10min。
19.通过采用上述技术方案,以上密度和熔融指数的lldpr的透明度高、耐高温和耐水性好,密度低、流延性好。
20.可选的,所述中层内还添加有30-40重量份甲壳素纳米纤维;所述甲壳素纳米纤维的制法包括以下步骤:将甲壳素溶解在乙酸溶液中,加入去离子水,制成浓度为1-2wt%的纺丝液;
将所述纺丝液经静电纺丝,制成纳米纤维;将聚(乙烯醇-co-乙烯)用质量比为1:1的异丙醇和水的混合溶液溶解,制得浓度为20-25wt%的浸渍液;将所述纳米纤维在浸渍液中浸渍20-30min后取出、干燥,然后浸渍在由纳米二氧化硅和氧化铝、聚酰胺固化剂、双酚a环氧树脂乳液制成的混合液中,抽真空15-20min,取出,在80-90℃下干燥。
21.热收缩膜在贴体包装肉类时,阻隔性不强,肉类保质期有待延长,且本技术中热收缩膜的厚度减小,透明度增大,厚度降低势必引起薄膜的耐拉伸能力下降,通过采用上述技术方案,在中层内添加甲壳素纳米纤维,甲壳素纳米纤维的主要成分为甲壳素,作为一种天然可再生资源,其储量仅次于纤维素,在自然界中通常以有序的结晶纳米纤维形式存在。甲壳素具备天然无毒、抗菌、生物可降解及生物相容性等优点,经静电纺丝制成的纳米纤维具有透光率高,力学性能优异的性能;纳米纤维具有超高长径比、力学性能优异,孔隙率高,透明度好,添加到中层以后,不影响热收缩膜的透明度,另外甲壳素纳米纤维在中层中形成三维网状结构,使中层内材料在各个方向上受力的能力大大增加,阻碍纯树脂分子链的运动,提高膜层的力学强度。
22.在制备甲壳素纳米纤维时,经静电纺丝制成的纳米纤维的比表面积大、孔隙率高,孔隙率高会增大光的反射和折射界面,仍影响薄膜的透明度,因此将聚(乙烯醇-co-乙烯)溶解后,浸渍填充在纳米纤维表面的孔隙内,降低光的折射和反射界面,减少光损失;聚(乙烯醇-co-乙烯)是半晶型无规共聚物,具有优异的阻隔性,在提高纳米纤维透明度的情况下,进一步改善力学强度和阻隔性,降低水蒸气和氧气的渗透,提高包装物的保质期,且未被聚(乙烯醇-co-乙烯)包覆完全的纳米纤维能增强聚(乙烯醇-co-乙烯)与环氧树脂的界面结合,环氧树脂的包覆使得纳米纤维呈现更好的透明性,从而获得力学强度高、透明度好、阻隔性强的甲壳素纳米纤维,使得厚度降低、透明度得到改善的热收缩膜的力学强度得到改善。
23.可选的,所述纳米纤维、浸渍液和混合液的质量比为1:0.3-0.5:0.6-0.8。
24.通过采用上述技术方案,将纳米纤维在浸渍液中浸渍后,浸渍液中的聚(乙烯醇-co-乙烯)能填充到纳米纤维表面的孔隙中,降低光损失,进一步提高甲壳素纳米纤维的透明度和对水蒸气和氧气的阻隔能力,然后将表面含有聚(乙烯醇-co-乙烯)的纳米纤维浸渍到含有双酚a环氧树脂的混合液中,双酚a环氧树脂能增加纳米纤维表面致密性,进一步降低光损失,提高透明度,且改善甲壳素纳米纤维的拉伸强度及阻隔性。
25.第二方面,本技术提供一种高透明聚乙烯热收缩膜的制备方法,采用如下的技术方案:一种高透明聚乙烯热收缩膜的制备方法,包括以下步骤:按照外层、中层和内层的原料配方称取原料,对各层原料混合均匀,分别获得外层混合物、内层混合物和中层混合物;将外层混合物、内层混合物和中层混合物挤出后经单层吹膜挤出,获得管坯;将管坯预热后,进行横向和纵向拉伸,制成高透明聚乙烯热收缩膜。
26.综上所述,本技术具有以下有益效果:1、由于本技术采用ldpe、mlldpe和hdpe等原料作为内层和外层原料,使用ldpe和
mlldpe、lldpe或hdpe等作为中层原料,三层结构的热收缩膜具有更好的加工性能和热收缩性,改善包装能力和耐拉伸能力,且以上各原料制成的热收缩膜的透明度高,厚度减小。
27.2、本技术中优选采用在内层和外层、中层中不添加hdpe,而是在中层中使用lldpe,制成的热收缩膜的密度降低,厚度减小,透明度得到改善,热收缩性增加。
28.3、本技术中优选在中层内添加甲壳素纳米纤维,在不影响热收缩膜透明度的前提下,改善热收缩膜的耐拉伸性、韧性和耐穿刺性,并改善热收缩膜对水蒸气和氧气的阻隔性,提高热收缩膜对于食品类包装时的保鲜时效,延长食品包装物的保质期。
具体实施方式
29.甲壳素纳米纤维的制备例1-6以下制备例中,聚(乙烯醇-co-乙烯)的乙烯含量为32%,选自上海源叶生物科技有限公司,货号为t24638,聚酰胺固化剂型号为d400,双酚a环氧树脂乳液型号为e44,水性松香树脂乳液中固含量为55%。
30.制备例1:(1)将甲壳素溶解在质量浓度为2%的乙酸溶液中,加入去离子水,制成浓度为2wt%的纺丝液,甲壳素为β-甲壳素;(2)将所述纺丝液经静电纺丝,制成直径为360nm,长度为40mm纳米纤维;(3)将聚(乙烯醇-co-乙烯)用质量比为1:1的异丙醇和水的混合溶液溶解,制得浓度为25wt%的浸渍液;(4)将2kg纳米纤维在1kg浸渍液中浸渍30min后取出、干燥,然后浸渍在由0.2kg纳米二氧化硅和0.2kg氧化铝、0.2kg聚酰胺固化剂和1kg双酚a环氧树脂乳液制成的混合液中,抽真空20min,取出,在90℃下干燥。
31.制备例2:(1)将甲壳素溶解在质量浓度为4%的乙酸溶液中,加入去离子水,制成浓度为1wt%的纺丝液;(2)将所述纺丝液经静电纺丝,制成直径为360nm,长度为40mm的纳米纤维;(3)将聚(乙烯醇-co-乙烯)用质量比为1:1的异丙醇和水的混合溶液溶解,制得浓度为20wt%的浸渍液;(4)将2kg纳米纤维在0.6kg浸渍液中浸渍20min后取出、干燥,然后浸渍在由0.1kg纳米二氧化硅和0.1kg氧化铝、0.1kg聚酰胺固化剂和0.9kg双酚a环氧树脂乳液制成的混合液中,抽真空15min,取出,在80℃下干燥。
32.制备例3:(1)将甲壳素溶解在质量浓度为2%的乙酸溶液中,加入去离子水,制成浓度为2wt%的纺丝液,甲壳素为β-甲壳素;(2)将所述纺丝液经静电纺丝,制成直径为360nm,长度为40mm纳米纤维;(3)将聚(乙烯醇-co-乙烯)用质量比为1:1的异丙醇和水的混合溶液溶解,制得浓度为25wt%的浸渍液;(4)将2kg纳米纤维在1kg浸渍液中浸渍30min后取出、干燥。
33.制备例4:(1)将甲壳素溶解在质量浓度为2%的乙酸溶液中,加入去离子水,制成浓度为2wt%的纺丝液,甲壳素为β-甲壳素;(2)将所述纺丝液经静电纺丝,制成直径为360nm,长度为40mm纳米纤维;(3)将2kg纳米纤维浸渍在由0.2kg纳米二氧化硅和0.2kg氧化铝、0.2kg聚酰胺固
化剂和1kg双酚a环氧树脂乳液制成的混合液中,抽真空20min,取出,在90℃下干燥。
34.制备例5:与制备例1的区别在于,混合液中未添加纳米二氧化硅和氧化铝。
35.制备例6:与制备例1的区别在于,混合液由0.2kg纳米二氧化硅和0.2kg氧化铝、1.2kg水性松香树脂乳液制成。实施例
36.以下实施例中ldpe的b料为中海壳牌2420d,a料为埃克森165bw1;mlldpe的ii号料为埃克森2703hh,i号料为埃克森3505mc;1号hdpe为埃克森hta001-hd,2号hdpe为伊朗国家石化hb0035,lldpe为大庆石化9047,ppa助剂型号为fx-5924,开口剂型号为2426k。
37.实施例1:一种高透明聚乙烯热收缩膜,依次包括外层、中层和内层,,外层、中层和内层的原料用量如表1所示,其中ldpe为密度为0.9225g/cm3,熔融指数为0.25g/10min的b料,mlldpe密度为0.918g/cm3,熔融指数为0.5g/10min的ii号料、hdpe包括质量比为1:0.5的1号hdpe和2号hdpe,1号hdpe的密度为9g/10min、密度为0.952g/cm3,2号hdpe的熔融指数为0.35g/10min、密度为0.959g/cm3。
38.上述高透明聚乙烯热收缩膜的制备方法,包括以下步骤:s1、按照外层、中层和内层的原料配方称取原料,对各层原料混合均匀,分别获得外层混合物、内层混合物和中层混合物;s2、将外层混合物、内层混合物和中层混合物加入到三层挤出机中,在180℃下挤出,将挤出料经单层吹膜机的挤出模头挤出形成管坯,挤出模头的温度为190℃;s3、将管坯冷却后牵引进入拉伸烘箱,在280℃下预热后,进行横向拉伸和纵向拉伸,拉伸强度110℃,横向拉伸5倍,纵向拉伸5倍,制成高透明聚乙烯热收缩膜。
39.表1实施例1-3中高透明聚乙烯热收缩膜的原料用量
实施例2-3:一种高透明聚乙烯热收缩膜,与实施例1的区别在于,内层、外层和中层的原料用量如表1所示。
40.实施例4:一种高透明聚乙烯热收缩膜,依次包括外层、中层和内层,,外层、中层和内层的原料用量如表2所示,其中ldpe为密度为0.922g/cm3,熔融指数为0.33g/10min的a料,mlldpe为密度为0.935g/cm3,熔融指数为0.5g/10min的i号料,lldpe的密度为0.919g/cm3,熔融指数为30g/g/10min。
41.上述高透明聚乙烯热收缩膜的制备方法,包括以下步骤:s1、按照外层、中层和内层的原料配方称取原料,对各层原料混合均匀,分别获得外层混合物、内层混合物和中层混合物;s2、将外层混合物、内层混合物和中层混合物加入到三层挤出机中,在180℃下挤出,将挤出料经单层吹膜机的挤出模头挤出形成管坯,挤出模头的温度为190℃;s3、将管坯冷却后牵引进入拉伸烘箱,在280℃下预热后,进行横向拉伸和纵向拉伸,拉伸强度110℃,横向拉伸5倍,纵向拉伸5倍,制成高透明聚乙烯热收缩膜。
42.表2实施例4-6中高透明聚乙烯热收缩膜的原料用量实施例5-6:一种高透明聚乙烯热收缩膜,与实施例4的区别在于,外层、中层和内层的原料用量如表1所示。
43.实施例7:一种高透明聚乙烯热收缩膜,与实施例4的区别在于,中层内还添加了40kg甲壳素纳米纤维,甲壳素纳米纤维由制备例1制成。
44.实施例8:一种高透明聚乙烯热收缩膜,与实施例4的区别在于,中层内还添加了30kg甲壳素纳米纤维,甲壳素纳米纤维由制备例2制成。
45.实施例9:一种高透明聚乙烯热收缩膜,与实施例7的区别在于,甲壳素纳米纤维由制备例3制成。
46.实施例10:一种高透明聚乙烯热收缩膜,与实施例7的区别在于,甲壳素纳米纤维由制备例4制成。
47.实施例11:一种高透明聚乙烯热收缩膜,与实施例7的区别在于,甲壳素纳米纤维由制备例5制成。
48.实施例12:一种高透明聚乙烯热收缩膜,与实施例7的区别在于,甲壳素纳米纤维由制备例6制成。
49.实施例13:一种高透明聚乙烯热收缩膜,与实施例1的区别在于,中层内还添加了40kg甲壳素纳米纤维,甲壳素纳米纤维由制备例1制成。
50.对比例对比例1:一种高透明聚乙烯热收缩膜,与实施例1的区别在于,内层、中层和外层中均为添加mlldpe。
51.对比例2:一种高透明聚乙烯热收缩膜,与实施例1的区别在于,内层、中层和外层
中均为添加hdpe。
52.对比例3:一种高透明聚乙烯热收缩膜,与实施例1的区别在于,内层、中层和外层中hdpe全部为i料hdpe。
53.对比例4:一种高透明聚乙烯热收缩膜,与实施例4的区别在于,使用等量的hdpe替代lldpe,hdpe为融指数为9g/10min、密度为0.952g/cm3的1号hdpe。
54.对比例5:一种高透明聚乙烯热收缩膜,与实施例4的区别在于,中层、内层和外层中未添加mlldpe。
55.对比例6:一种pe热收缩膜,包括从上至下依次设置的上层、中层和下层,上层厚度:中层厚度:下层厚度=1:2:1,长层和下层的配方相同,包含如下重量百分比的组分:ldpe20%、hdpe25%、mlldpe40%、uhmwpe5%、聚乙烯蜡10%,其中ldpe的熔融指数为0.2~0.3,密度为0.920~0.923g/cm3,hdpe的熔融指数为0.01以下,密度为0.955g/cm3,mlldpe的熔融指数为0.5-1,密度为0.916-0.92g/cm3;中层包括以下重量百分比的组分:ldpe10%、hdpe40%、mlldpe20%、uhmwpe20%、聚乙烯蜡10%,ldpe的熔融指数为0.2~0.3,密度为0.920~0.923g/cm3,hdpe的熔融指数为0.01以下,密度为0.955g/cm3,mlldpe的熔融指数为0.2-0.3,密度为0.93-0.95g/cm3。
56.性能检测试验按照实施例和对比例中方法制备聚乙烯热收缩膜,并参照以下方法检测其性能,将检测结果记录于表3中。
57.1、厚度:按照gb/t6672-2001《塑料薄膜和薄片厚度测定机械测量法》进行检测。
58.2、透光率:按照gb/t2410-2008《透明塑料透光率和五毒试验方法》进行检测,采用wgt-t透光率雾度测定仪。
59.3、拉伸强度:按照gb/t1040.3-2006《塑料拉伸性能的测定第3部分:薄膜和薄片的试验》进行检测。
60.4、断裂伸长率:按照gb/t10322-1991《塑料薄膜拉伸性能试验标准》进行检测。
61.5、水蒸气透过率:按照gb/t1037-2021《塑料薄膜和薄片水蒸气透过性能测定杯式增重与减重法》进行测试。
62.6、氧气透过率:按照gb/t1038-2000《塑料薄膜和薄片气体透过性试验方法压差法》进行测试。
63.表3高透明度聚乙烯热收缩膜的性能检测结果
结合实施例1-3和表3内的数据,可以看出,实施例1-3制备的热收缩膜厚度薄,具有较高的透明度,而且耐拉伸性好,机械强度高。
64.结合实施例4-6和表3内的数据,可以看出,实施例4-6制备的热收缩膜相较于实施例1,厚度更小,透明度更高,但力学性能稍有减弱。
65.实施例7和实施例8相较于实施例4,还在中层内分别添加了制备例1和制备例2制成的甲壳素纳米纤维,实施例7和实施例8制备的热收缩膜与实施例4相比,透明度变化不大,但力学强度增大,对于水蒸气和氧气的阻隔能力升高。
66.与实施例7相比,实施例9中使用制备例3制成的甲壳素纳米纤维,制备例3中为浸洗含有纳米二氧化硅、氧化铝、聚酰胺固化剂和双酚a环氧树脂乳液的混合液中,表3内显示,热收缩膜的透光率下降,说明透明度减弱,而且对水蒸气和氧气的阻隔能力减弱,耐拉伸性降低。
67.实施例10与实施例7相比,使用制备例4制成的甲壳素纳米纤维,制备例4中为浸渍由聚(乙烯醇-co-乙烯)制成的浸渍液,实施例10制备的热收缩膜拉伸强度和断裂伸长率下降,而且阻隔能力减弱。
68.实施例11中使用制备例5制成的甲壳素纳米纤维,制备例5中混合液中未添加纳米二氧化硅和氧化铝,与实施例7相比,热收缩膜的透明度有所下降,力学强度变化不大,但阻隔能力下降显著。
69.实施例12中使用制备例6制成的甲壳素纳米纤维,制备例6中未使用双酚a环氧树脂乳液作为粘结纳米二氧化硅和氧化铝的粘结成分,表3内显示,与实施例7相比,热收缩膜的透明度有所降低,力学强度减弱。
70.实施例13与实施例1相比,使用制备例1制成的甲壳素纳米纤维,实施例13制备的热收缩膜与实施例1相比,力学强度增大,阻隔能力提升,透明度变化不大。
71.对比例1和对比例2与实施例1相比,在内层、外层和中层中分别未添加mlldpe和hdpe,对比例1制成的热收缩膜的透光率下降,透明度减弱,且对比例2制成的热收缩膜的耐拉伸强度下降,力学性能减弱。
72.对比例3中采用一种i料hdpe,与实施例1相比,对比例3制成的热收缩膜的力学强度减弱、透明度变差。
73.对比例4与实施例4相比,hdpe替代lldpe,表3内显示,对比例4制备的热收缩膜的力学强度减弱,对比例5与实施例4相比,内层、外层和中层内均为添加mlldpe,对比例5制成的热收缩膜的透明度有所下降。
74.对比例6为现有技术制备的一种pe热收缩膜,其透明度低,阻隔性不强。
75.本具体实施例仅仅是对本技术的解释,其并不是对本技术的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本技术的权利要求范围内都受到专利法的保护。

技术特征:
1.一种高透明聚乙烯热收缩膜,包括内层、中层和外层,其特征在于,所述内层和外层均包括以下重量份的原料:450-650份ldpe、100-350份mlldpe、0-500份hdpe、0-5份开口剂和4-8份ppa助剂;所述中层包括以下重量份的原料:450-600份ldpe、100-200份mlldpe、200-500份lldpe或hdpe、8-12份开口剂和4-8份ppa助剂。2.根据权利要求1所述的高透明聚乙烯热收缩膜,其特征在于:所述内层和外层均包括以下重量份的原料:550-650份ldpe、200-350份mlldpe、3-5开口剂、5-8份ppa助剂;所述中层包括以下重量份的原料:500-600份ldpe、150-200份mlldpe、200-250份lldpe、8-10份开口剂、4-6份ppa助剂。3.根据权利要求1所述的高透明聚乙烯热收缩膜,其特征在于,所述内层和外层均包括以下重量份的原料:450-600份ldpe、100-200份mlldpe、450-500份hdpe、5-8份ppa助剂;所述中层包括以下重量份的原料:450-550份ldpe、100-150份mlldpe、450-500份hdpe、5-8份ppa助剂。4.根据权利要求3所述的高透明聚乙烯热收缩膜,其特征在于,所述hdpe包括质量比为1:0.4-0.5的1号hdpe和2号hdpe,1号hdpe的熔融指数为9-9.5g/10min、密度为0.95-0.952g/cm3,2号hdpe的熔融指数为0.3-0.35g/10min、密度为0.95-0.959。5.根据权利要求1所述的高透明聚乙烯热收缩膜,其特征在于,所述ldpe选自密度为0.92-0.922g/cm3,熔融指数为0.3-0.33g/10min的a料和密度为0.922-0.9225g/cm3,熔融指数为0.23-0.25g/10min的b料中的一种。6.根据权利要求1所述的高透明聚乙烯热收缩膜,其特征在于,所述mlldpe为密度为0.93-0.935g/cm3,熔融指数为0.45-0.5g/10min的i号料或密度为0.918-0.92g/cm3,熔融指数为0.45-0.5g/10min的ii号料。7.根据权利要求1所述的高透明聚乙烯热收缩膜,其特征在于,所述lldpe的密度为0.919-0.920g/cm3,熔融指数为1-30g/g/10min。8.根据权利要求2或3所述的高透明聚乙烯热收缩膜,其特征在于,所述中层内还添加有30-40重量份甲壳素纳米纤维;所述甲壳素纳米纤维的制法包括以下步骤:将甲壳素溶解在乙酸溶液中,加入去离子水,制成浓度为1-2wt%的纺丝液;将所述纺丝液经静电纺丝,制成纳米纤维;将聚(乙烯醇-co-乙烯)用质量比为1:1的异丙醇和水的混合溶液溶解,制得浓度为20-25wt%的浸渍液;将所述纳米纤维在浸渍液中浸渍20-30min后取出、干燥,然后浸渍在由纳米二氧化硅和氧化铝、聚酰胺固化剂、双酚a环氧树脂乳液制成的混合液中,抽真空15-20min,取出,在80-90℃下干燥。9.根据权利要求8所述的高透明聚乙烯热收缩膜,其特征在于,所述纳米纤维、浸渍液和混合液的质量比为1:0.3-0.5:0.6-0.8。10.权利要求1-9任一项所述的高透明聚乙烯热收缩膜的制备方法,其特征在于,包括
以下步骤:按照外层、中层和内层的原料配方称取原料,对各层原料混合均匀,分别获得外层混合物、内层混合物和中层混合物;将外层混合物、内层混合物和中层混合物挤出后经单层吹膜挤出,获得管坯;将管坯预热后,进行横向和纵向拉伸,制成高透明聚乙烯热收缩膜。

技术总结
本申请涉及包装薄膜领域,具体公开了一种高透明聚乙烯热收缩膜及其制备方法。高透明聚乙烯热收缩膜包括内层、中层和外层,其特征在于,所述内层和外层均包括以下重量份的原料:450-650份LDPE、100-350份MLLDPE、0-500份HDPE、0-5份开口剂和4-8份PPA助剂;所述中层包括以下重量份的原料:450-600份LDPE、100-200份MLLDPE、200-500份LLDPE或HDPE、8-12份开口剂和4-8份PPA助剂。本申请的高透明聚乙烯热收缩膜具有厚度薄、透明度高、韧性好,且阻隔能力强的优点。强的优点。


技术研发人员:刘世平 滕忻超 李泽进
受保护的技术使用者:青岛泰博聚合标签有限公司
技术研发日:2023.06.21
技术公布日:2023/9/14
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

飞机超市 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

相关推荐