一种无线传感网络可靠传输方法与流程

未命名 09-18 阅读:75 评论:0


1.本发明涉及无线传感网络传输的技术领域,尤其涉及一种无线传感网络可靠传输方法。


背景技术:

2.在信息化时代背景下,物联网的出现为人们的生活生产给予了诸多便利,也让信息储存、信息传输更加便捷,而物联网优势形成的关键在于物联网中的无线传感网,其是物联网的重要组成部分。依托计算机发展的物联网,其数据传输是核心技术,确保数据传输效率和质量是无线传感网的重点。现有的无线传感网络在实际应用过程中,由于环境中存在随机噪音,会使数据传输出现误码,增加数据重传次数,严重影响传感网络能耗。针对该问题,本发明提出一种无线传感网络可靠传输方法,降低数据重传次数,提高无线传感网络生命周期。


技术实现要素:

3.有鉴于此,本发明提供一种无线传感网络可靠传输方法,目的在于:1)通过构建传感器能量损耗模型得到进行数据可靠传输所需消耗的能量,并结合传感器在无线传感网络区域的期望感知半径,计算得到能覆盖无线传感网络区域的最优数据传输中继节点数量,以最优数据传输中继节点数量为约束,根据无线传感网络中节点的剩余能量和相邻跳数节点间的距离,筛选求解得到剩余能量足够且相邻跳数距离足够小的当前最优中继节点集合,避免过大的中继节点距离导致传输数据的信息丢失,且当前最优中继节点集合可实现无线传感网络的全区域覆盖;2)根据实现无线传感网络的全区域覆盖的当前最优中继节点集合,从起始位置依次选取到起始位置距离且目标位置距离均较近的中继节点作为下一跳节点,进而建立当前最优传输路径,并对待传输的数据信号进行抑制信道噪声干扰的编码处理,降低了同频道其他数据信号的干扰,并根据所加入动态序列码的自相关特性获取信号调制部分的时域信息,实现编码后数据信号的同步解码识别。
4.实现上述目的,本发明提供的一种无线传感网络可靠传输方法,包括以下步骤:s1:构建传感器能量损耗模型,所述传感器能量损耗模型的输入为数据传输距离和数据发送量,输出为数据可靠传输需要消耗的传感器能量;s2:根据传感器能量损耗模型确定无线传感网络中最优数据传输中继节点数量;s3:以最优数据传输中继节点数量为约束,根据无线传感网络中节点的剩余能量和相邻跳数节点间的距离,计算并构建得到无线传感网络中的当前最优中继节点集合,基于当前最优中继节点集合建立当前最优传输路径;s4:对待传输的数据信号进行抑制信道噪声干扰的编码处理,得到编码后的数据信号,其中基于动态序列码的信号调制方法为所述数据编码的主要实施方法;s5:按照当前最优传输路径对编码后的数据信号进行数据可靠传输。
5.作为本发明的进一步改进方法:
可选地,所述s1步骤中构建传感器能量损耗模型,包括:构建传感器能量损耗模型,所述传感器能量损耗模型的输入为数据传输距离和数据发送量,输出为数据可靠传输需要消耗的传感器能量,其中传感器能量损耗模型的形式为:;;;其中:表示传感器loc进行数据可靠传输所需消耗的传感器能量;表示传感器接收单位比特数据所消耗的传感器能量;表示传感器发送单位比特数据所消耗的传感器能量;表示传感器的感知直径,表示传感器loc的短距离通信阈值;表示数据可靠传输的传输距离,表示数据可靠传输的数据发送量;表示传感器loc中放大电路的放大系数;表示传感器loc进行数据可靠传输过程中的传输消耗能量。
6.可选地,所述s2步骤中根据传感器能量损耗模型确定最优数据传输中继节点数量,包括:在面积为m平方米的区域中部署n个传感器,构成无线传感网络中的n个传感器节点,并对n个传感器节点进行编号,编号结果依次为 ,则n个传感器节点的集合为:;其中:表示传感器节点的位置坐标;表示传感器节点中放大电路的放大系数;获取待传输数据信号的数据量x,根据传感器能量损耗模型,确定无线传感网络中最优数据传输中继节点数量,其中最优数据传输中继节点数量的确定流程为:s21:设定最优数据传输中继节点数量为num,则num个数据传输中继节点在区域内的期望感知半径r为:;s22:计算得到num个最优数据传输中继节点进行数据可靠传输过程中所期望消耗
的传感器能量:;;其中:表示将x比特的数据从期望中继节点传输到期望中继节点所期望消耗的传输消耗能量,将每个期望中继节点中放大电路的放大系数设置为1;表示第k个期望中继节点;表示预设的数据可靠传输距离;表示期望中继节点中放大电路的放大系数;表示期望中继节点的短距离通信阈值;s23:对传感器能量e中num求一阶导,并令求导结果为0,求解得到最优数据传输中继节点数量num。在本发明实施例中,若num》n,则令num=n。
7.可选地,所述s3步骤中以最优数据传输中继节点数量为约束,根据无线传感网络中节点的剩余能量和相邻跳数节点间的距离,计算并构建得到无线传感网络中的当前最优中继节点集合,包括:以最优数据传输中继节点数量为约束,根据无线传感网络中节点的剩余能量和相邻跳数节点间的距离,计算并构建得到无线传感网络中的当前最优中继节点集合,其中最优中继节点集合的构建流程为:s31:获取n个传感器节点的剩余能量,其中传感器节点的剩余能量为;s32:从n个传感器节点中随机选取num个传感器节点作为初始中继节点集合,则初始中继节点集合为:;;其中:表示初始中继节点集合中的第num个中继节点,表示的位置坐标,表示的剩余能量;表示初始中继节点集合对应的初始中继节点位置坐标集合;s33:构建适应度函数:
;其中:表示输入适应度函数的变量值,即中继节点集合;表示预设的数据可靠传输距离;表示中继节点集合中第s个中继节点的剩余能量,表示当前n个中继节点的剩余能量总和,;表示在中继节点集合中第s个中继节点感知范围内的传感器节点集合,表示传感器节点集合的剩余能量总和,其中传感器节点感知范围即以传感器节点为中心,半径为的圆形范围;表示传感器节点集合中传感器节点的平均剩余能量;表示中继节点集合中任意两个位置相邻中继节点的最大距离;并记录;s35:对中继节点位置坐标集合进行迭代更新:;其中:表示的迭代更新结果,为中继节点位置坐标集合中第s个中继节点位置坐标,;表示步长缩放因子,将其设置为0.1;在无线传感网络中的n个传感器节点中遍历得到中不存在且距离最近的传感器节点y,计算该节点y的被抛弃概率,并按该概率对传感器节点y进行抛弃;若抛弃成功,则中继节点集合中的第s个中继节点为,否则中继节点集合中的第s个中继节点为传感器节点y,为传感器节点y的位置坐标;在本发明实施例中,无线传感网络中共有n个传感器节点,中继节点集合中具有num个中继节点,n》num,在传感器节点遍历过程中,从无线传感网络的n个传感器节点中遍历得到当前中继节点集合不存在的,且距离迭代更新得到的位置坐标最近的传感器节点,并结合被抛弃概率进行中继节点更新;s36:记录中继节点集合的适应度函数值,令,返回步骤s35,直到达到最大迭代次数max;s37:选取max+1次迭代过程中适应度函数值最小的中继节点集合作为当前最优中
继节点集合,其中表示当前最优中继节点集合中的第s个中继节点。
8.可选地,所述s3步骤中基于当前最优中继节点集合建立当前最优传输路径,包括:基于当前最优中继节点集合建立当前最优传输路径,其中当前最优传输路径的构建流程为:从起始位置出发,计算起始位置与目标位置之间的传输距离,若传输距离低于预设置的距离阈值,则当前最优传输路径为起始位置-目标位置的传输路径;否则在当前最优中继节点遍历得到满足下式最小的中继节点:其中:表示中继节点到起始位置的距离,表示中继节点到目标位置的距离;表示中继节点的剩余能量;计算中继节点到目标位置的传输距离;若传输距离低于预设置的距离阈值,则当前最优传输路径为起始位置-中继节点-目标位置的传输路径;否则在当前最优中继节点遍历得到下一跳中继节点并计算得到下一跳中继节点到目标位置的传输距离,重复当前遍历步骤,直到下一跳中继节点到目标位置的传输距离低于预设置的距离阈值,得到当前最优传输路径,其中下一跳中继节点满足下式:;其中:表示上一跳中继节点。
9.可选地,所述s4步骤中对待传输的数据信号进行抑制信道噪声干扰的编码处理,包括:对待传输的数据信号进行抑制信道噪声干扰的编码处理,其中编码处理流程为:s41:获取待传输的数据信号,其中表示第个数据信号点,g表示待传输数据信号的数据信号点总数;s42:生成长度为g的动态序列码,其中所生成动态序列码为,等于1或-1;s43:生成编码处理后的数据信号:;其中:表示载波频率;表示编码调制速率;
表示窗函数,在[0,1/a]上取1,其他位置取0;表示编码处理后的数据信号,t表示时序信息。
[0010]
可选地,所述s5步骤中按照当前最优传输路径对编码后的数据信号进行数据传输,包括:按照当前最优传输路径对编码后的数据信号进行数据传输,直到目标位置接收到编码后的数据信号;目标位置对编码后的数据信号进行短时傅里叶变换处理,并计算得到短时傅里叶变换结果在不同时段的功率谱,选取功率谱随时间变化曲线中最尖锐的点所对应的时刻作为随机码元编码的初始时刻,得到数据信号的编码时域信息,并对该时域信息所对应的编码信号部分进行滤波器解码处理,解码后的数据信号,其中滤波器解码处理为低通滤波的方式。
[0011]
为了解决上述问题,本发明提供一种电子设备,所述电子设备包括:存储器,存储至少一个指令;通信接口,实现电子设备通信;及处理器,执行所述存储器中存储的指令以实现上述所述的无线传感网络可靠传输方法。
[0012]
为了解决上述问题,本发明还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一个指令,所述至少一个指令被电子设备中的处理器执行以实现上述所述的无线传感网络可靠传输方法。
[0013]
相对于现有技术,本发明提出一种无线传感网络可靠传输方法,该技术具有以下优势:首先,本方案提出一种无线传感网络下数据传输中继节点的确定方法,以最优数据传输中继节点数量为约束,根据无线传感网络中节点的剩余能量和相邻跳数节点间的距离,计算并构建得到无线传感网络中的当前最优中继节点集合,其中最优中继节点集合的构建流程为:获取n个传感器节点的剩余能量,其中传感器节点的剩余能量为;从n个传感器节点中随机选取num个传感器节点作为初始中继节点集合,则初始中继节点集合为:;;其中:表示初始中继节点集合中的第num个中继节点,表示的位置坐标,表示的剩余能量;表示初始中继节点集合对应的初始中继节点位置坐标集合;构建适应度函数:
;其中:表示输入适应度函数的变量值,即中继节点集合;表示中继节点集合中第s个中继节点的剩余能量,表示当前n个中继节点的剩余能量总和,;表示在中继节点集合中第s个中继节点感知范围内的传感器节点集合,表示传感器节点集合的剩余能量总和,其中传感器节点感知范围即以传感器节点为中心,半径为的圆形范围;表示传感器节点集合中传感器节点的平均剩余能量;表示中继节点集合中任意两个位置相邻中继节点的最大距离;并记录;设置当前算法迭代次数为v,最大迭代次数为max,v的初始值为0,则第v次迭代得到的中继节点集合为,对应的中继节点位置坐标集合为;对中继节点位置坐标集合进行迭代更新:;其中:表示的迭代更新结果,为中继节点位置坐标集合中第s个中继节点位置坐标,;表示步长缩放因子,将其设置为0.1;在无线传感网络中的n个传感器节点中遍历得到中不存在且距离最近的传感器节点y,计算该节点y的被抛弃概率,并按该概率对传感器节点y进行抛弃;若抛弃成功,则中继节点集合中的第s个中继节点为,否则中继节点集合中的第s个中继节点为传感器节点y,为传感器节点y的位置坐标;记录中继节点集合的适应度函数值,令进行迭代,直到达到最大迭代次数max;选取max+1次迭代过程中适应度函数值最小的中继节点集合作为当前最优中继节点集合:;其中:表示当前最优中继节点集合中的第s个中继节点。本方案通过构建传感器能量损耗模型得到进行数据可靠传输所需消耗的能量,并结合传感器在无线传感网络区域的期望感知半径,计算得到能覆盖无线传感网络区域的最优数据传输中继节点数量,以最优数据传输中继节点数量为约束,根据无线传感网络中节点的剩余能量和相邻跳数节点间的距离,筛选求解得到剩余能量足够且相邻跳数距离足够小的当前最优中继节点集合,
避免过大的中继节点距离导致传输数据的信息丢失,且当前最优中继节点集合可实现无线传感网络的全区域覆盖。
[0014]
同时,本方案提出一种基于当前最优中继节点集合建立当前最优传输路径的方法,其中当前最优传输路径的构建流程为:从起始位置出发,计算起始位置与目标位置之间的传输距离,若传输距离低于预设置的距离阈值,则当前最优传输路径为起始位置-目标位置的传输路径;否则在当前最优中继节点遍历得到满足下式最小的中继节点:;其中:表示中继节点到起始位置的距离,表示中继节点到目标位置的距离;表示中继节点的剩余能量;计算中继节点到目标位置的传输距离;若传输距离低于预设置的距离阈值,则当前最优传输路径为起始位置-中继节点-目标位置的传输路径;否则在当前最优中继节点遍历得到下一跳中继节点并计算得到下一跳中继节点到目标位置的传输距离,重复当前遍历步骤,直到下一跳中继节点到目标位置的传输距离低于预设置的距离阈值,得到当前最优传输路径,其中下一跳中继节点满足下式:;其中:表示上一跳中继节点。本方案基于实现无线传感网络的全区域覆盖的当前最优中继节点集合,从起始位置依次选取到起始位置距离且目标位置距离均较近的中继节点作为下一跳节点,进而建立当前最优传输路径,并对待传输的数据信号进行抑制信道噪声干扰的编码处理,降低了同频道其他数据信号的干扰,并根据所加入动态序列码的自相关特性获取信号调制部分的时域信息,实现编码后数据信号的同步解码识别。
附图说明
[0015]
图1为本发明一实施例提供的一种无线传感网络可靠传输方法的流程示意图;图2为本发明一实施例提供的实现无线传感网络可靠传输方法的电子设备的结构示意图。
具体实施方式
[0016]
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
[0017]
本技术实施例提供一种无线传感网络可靠传输方法。所述无线传感网络可靠传输方法的执行主体包括但不限于服务端、终端等能够被配置为执行本技术实施例提供的该方法的电子设备中的至少一种。换言之,所述无线传感网络可靠传输方法可以由安装在终端设备或服务端设备的软件或硬件来执行,所述软件可以是区块链平台。所述服务端包括但
不限于:单台服务器、服务器集群、云端服务器或云端服务器集群等。
实施例1
[0018]
s1:构建传感器能量损耗模型,所述传感器能量损耗模型的输入为数据传输距离和数据发送量,输出为数据可靠传输需要消耗的传感器能量。
[0019]
所述s1步骤中构建传感器能量损耗模型,包括:构建传感器能量损耗模型,所述传感器能量损耗模型的输入为数据传输距离和数据发送量,输出为数据可靠传输需要消耗的传感器能量,其中传感器能量损耗模型的形式为:;;其中:表示传感器loc进行数据可靠传输所需消耗的传感器能量;表示传感器接收单位比特数据所消耗的传感器能量;表示传感器发送单位比特数据所消耗的传感器能量;表示传感器的感知直径,表示传感器loc的短距离通信阈值;表示数据可靠传输的传输距离,表示数据可靠传输的数据发送量;表示传感器loc中放大电路的放大系数;表示传感器loc进行数据可靠传输过程中的传输消耗能量。
[0020]
所述s2步骤中根据传感器能量损耗模型确定最优数据传输中继节点数量,包括:在面积为m平方米的区域中部署n个传感器,构成无线传感网络中的n个传感器节点,并对n个传感器节点进行编号,编号结果依次为,则n个传感器节点的集合为:其中:表示传感器节点的位置坐标;表示传感器节点中放大电路的放大系数;获取待传输数据信号的数据量x,根据传感器能量损耗模型,确定无线传感网络中最优数据传输中继节点数量,其中最优数据传输中继节点数量的确定流程为:s21:设定最优数据传输中继节点数量为num,则num个数据传输中继节点在区域内的期望感知半径r为:
;s22:计算得到num个最优数据传输中继节点进行数据可靠传输过程中所期望消耗的传感器能量:;;其中:表示将x比特的数据从期望中继节点传输到期望中继节点所期望消耗的传输消耗能量,将每个期望中继节点中放大电路的放大系数设置为1;表示第k个期望中继节点;表示期望中继节点中放大电路的放大系数;s23:对传感器能量e中num求一阶导,并令求导结果为0,求解得到最优数据传输中继节点数量num。
[0021]
s3:以最优数据传输中继节点数量为约束,根据无线传感网络中节点的剩余能量和相邻跳数节点间的距离,计算并构建得到无线传感网络中的当前最优中继节点集合,基于当前最优中继节点集合建立当前最优传输路径。
[0022]
所述s3步骤中以最优数据传输中继节点数量为约束,根据无线传感网络中节点的剩余能量和相邻跳数节点间的距离,计算并构建得到无线传感网络中的当前最优中继节点集合,包括:以最优数据传输中继节点数量为约束,根据无线传感网络中节点的剩余能量和相邻跳数节点间的距离,计算并构建得到无线传感网络中的当前最优中继节点集合,其中最优中继节点集合的构建流程为:s31:获取n个传感器节点的剩余能量,其中传感器节点的剩余能量为;s32:从n个传感器节点中随机选取num个传感器节点作为初始中继节点集合,则初始中继节点集合为:;;其中:表示初始中继节点集合中的第num个中继节点,表示的位置坐标,表示的剩余能量;
表示初始中继节点集合对应的初始中继节点位置坐标集合;s33:构建适应度函数:;其中:表示输入适应度函数的变量值,即中继节点集合;表示中继节点集合中第s个中继节点的剩余能量,表示当前n个中继节点的剩余能量总和,;表示在中继节点集合中第s个中继节点感知范围内的传感器节点集合,表示传感器节点集合的剩余能量总和,其中传感器节点感知范围即以传感器节点为中心,半径为的圆形范围;表示传感器节点集合中传感器节点的平均剩余能量;表示中继节点集合中任意两个位置相邻中继节点的最大距离;并记录;s34:设置当前算法迭代次数为v,最大迭代次数为max,v的初始值为0,则第v次迭代得到的中继节点集合为,对应的中继节点位置坐标集合为;s35:对中继节点位置坐标集合进行迭代更新:;其中:表示的迭代更新结果,为中继节点位置坐标集合中第s个中继节点位置坐标,;表示步长缩放因子,将其设置为0.1;在无线传感网络中的n个传感器节点中遍历得到中不存在且距离最近的传感器节点y,计算该节点y的被抛弃概率,并按该概率对传感器节点y进行抛弃;若抛弃成功,则中继节点集合中的第s个中继节点为,否则中继节点集合中的第s个中继节点为传感器节点y,为传感器节点y的位置坐标;s36:记录中继节点集合的适应度函数值,令,返回步骤s35,直到达到最大迭代次数max;s37:选取max+1次迭代过程中适应度函数值最小的中继节点集合作为当前最优中
继节点集合,其中表示当前最优中继节点集合中的第s个中继节点。
[0023]
所述s3步骤中基于当前最优中继节点集合建立当前最优传输路径,包括:基于当前最优中继节点集合建立当前最优传输路径,其中当前最优传输路径的构建流程为:从起始位置出发,计算起始位置与目标位置之间的传输距离,若传输距离低于预设置的距离阈值,则当前最优传输路径为起始位置-目标位置的传输路径;否则在当前最优中继节点遍历得到满足下式最小的中继节点:;其中:表示中继节点到起始位置的距离,表示中继节点到目标位置的距离;表示中继节点的剩余能量;计算中继节点到目标位置的传输距离;若传输距离低于预设的距离阈值,则当前最优传输路径为起始位置-中继节点-目标位置的传输路径;否则在当前最优中继节点遍历得到下一跳中继节点并计算得到下一跳中继节点到目标位置的传输距离,重复当前遍历步骤,直到下一跳中继节点到目标位置的传输距离低于预设的距离阈值,得到当前最优传输路径,其中下一跳中继节点满足下式:;其中:表示上一跳中继节点。
[0024]
s4:对待传输的数据信号进行抑制信道噪声干扰的编码处理,得到编码后的数据信号。
[0025]
所述s4步骤中对待传输的数据信号进行抑制信道噪声干扰的编码处理,包括:对待传输的数据信号进行抑制信道噪声干扰的编码处理,其中编码处理流程为:s41:获取待传输的数据信号,其中表示第个数据信号点,g表示待传输数据信号的数据信号点总数;s42:生成长度为g的动态序列码,其中所生成动态序列码为,等于1或-1;s43:生成编码处理后的数据信号:
;其中:表示载波频率;表示编码调制速率;表示窗函数,在[0,1/a]上取1,其他位置取0;表示编码处理后的数据信号,t表示时序信息。
[0026]
s5:对待传输的数据信号进行抑制信道噪声干扰的编码处理,得到编码后的数据信号。
[0027]
所述s5步骤中按照当前最优传输路径对编码后的数据信号进行数据传输,包括:按照当前最优传输路径对编码后的数据信号进行数据传输,直到目标位置接收到编码后的数据信号;目标位置对编码后的数据信号进行短时傅里叶变换处理,并计算得到短时傅里叶变换结果在不同时段的功率谱,选取功率谱随时间变化曲线中最尖锐的点所对应的时刻作为随机码元编码的初始时刻,得到数据信号的编码时域信息,并对该时域信息所对应的编码信号部分进行滤波器解码处理,解码后的数据信号,其中滤波器解码处理为低通滤波的方式。
实施例2
[0028]
如图2所示,是本发明一实施例提供的实现无线传感网络可靠传输方法的电子设备的结构示意图。
[0029]
所述电子设备1可以包括处理器10、存储器11、通信接口13和总线,还可以包括存储在所述存储器11中并可在所述处理器10上运行的计算机程序,如程序12。
[0030]
其中,所述存储器11至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、移动硬盘、多媒体卡、卡型存储器(例如:sd或dx存储器等)、磁性存储器、磁盘、光盘等。所述存储器11在一些实施例中可以是电子设备1的内部存储单元,例如该电子设备1的移动硬盘。所述存储器11在另一些实施例中也可以是电子设备1的外部存储设备,例如电子设备1上配备的插接式移动硬盘、智能存储卡(smart media card, smc)、安全数字(secure digital, sd)卡、闪存卡(flash card)等。进一步地,所述存储器11还可以既包括电子设备1的内部存储单元也包括外部存储设备。所述存储器11不仅可以用于存储安装于电子设备1的应用软件及各类数据,例如程序12的代码等,还可以用于暂时地存储已经输出或者将要输出的数据。
[0031]
所述处理器10在一些实施例中可以由集成电路组成,例如可以由单个封装的集成电路所组成,也可以是由多个相同功能或不同功能封装的集成电路所组成,包括一个或者多个中央处理器(central processing unit,cpu)、微处理器、数字处理芯片、图形处理器
及各种控制芯片的组合等。所述处理器10是所述电子设备的控制核心(control unit),利用各种接口和线路连接整个电子设备的各个部件,通过运行或执行存储在所述存储器11内的程序或者模块(用于实现无线传感网络可靠传输的程序12等),以及调用存储在所述存储器11内的数据,以执行电子设备1的各种功能和处理数据。
[0032]
所述通信接口13可以包括有线接口和/或无线接口(如wi-fi接口、蓝牙接口等),通常用于在该电子设备1与其他电子设备之间建立通信连接,并实现电子设备内部组件之间的连接通信。
[0033]
所述总线可以是外设部件互连标准(peripheral component interconnect,简称pci)总线或扩展工业标准结构(extended industry standard architecture,简称eisa)总线等。该总线可以分为地址总线、数据总线、控制总线等。所述总线被设置为实现所述存储器11以及至少一个处理器10等之间的连接通信。
[0034]
图2仅示出了具有部件的电子设备,本领域技术人员可以理解的是,图2示出的结构并不构成对所述电子设备1的限定,可以包括比图示更少或者更多的部件,或者组合某些部件,或者不同的部件布置。
[0035]
例如,尽管未示出,所述电子设备1还可以包括给各个部件供电的电源(比如电池),优选地,电源可以通过电源管理装置与所述至少一个处理器10逻辑相连,从而通过电源管理装置实现充电管理、放电管理、以及功耗管理等功能。电源还可以包括一个或一个以上的直流或交流电源、再充电装置、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。所述电子设备1还可以包括多种传感器、蓝牙模块、wi-fi模块等,在此不再赘述。
[0036]
可选地,该电子设备1还可以包括用户接口,用户接口可以是显示器(display)、输入单元(比如键盘(keyboard)),可选地,用户接口还可以是标准的有线接口、无线接口。可选地,在一些实施例中,显示器可以是led显示器、液晶显示器、触控式液晶显示器以及oled(organic light-emitting diode,有机发光二极管)触摸器等。其中,显示器也可以适当的称为显示屏或显示单元,用于显示在电子设备1中处理的信息以及用于显示可视化的用户界面。
[0037]
应该了解,所述实施例仅为说明之用,在专利申请范围上并不受此结构的限制。
[0038]
所述电子设备1中的所述存储器11存储的程序12是多个指令的组合,在所述处理器10中运行时,可以实现:构建传感器能量损耗模型;根据传感器能量损耗模型确定无线传感网络中最优数据传输中继节点数量;以最优数据传输中继节点数量为约束,根据无线传感网络中节点的剩余能量和相邻跳数节点间的距离,计算并构建得到无线传感网络中的当前最优中继节点集合,基于当前最优中继节点集合建立当前最优传输路径;对待传输的数据信号进行抑制信道噪声干扰的编码处理,得到编码后的数据信号;按照当前最优传输路径对编码后的数据信号进行数据可靠传输。
[0039]
具体地,所述处理器10对上述指令的具体实现方法可参考图1对应实施例中相关步骤的描述,在此不赘述。
[0040]
需要说明的是,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。并且本文中的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、装置、物品或者方法不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、装置、物品或者方法所固有的要素。在没有更多限制的情况下,由语句“包括一个
……”
限定的要素,并不排除在包括该要素的过程、装置、物品或者方法中还存在另外的相同要素。
[0041]
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如rom/ram、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
[0042]
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

技术特征:
1.一种无线传感网络可靠传输方法,其特征在于,所述方法包括:s1:构建传感器能量损耗模型,所述传感器能量损耗模型的输入为数据传输距离和数据发送量,输出为数据可靠传输需要消耗的传感器能量;s2:根据传感器能量损耗模型确定无线传感网络中最优数据传输中继节点数量;s3:以最优数据传输中继节点数量为约束,根据无线传感网络中节点的剩余能量和相邻跳数节点间的距离,计算并构建得到无线传感网络中的当前最优中继节点集合,基于当前最优中继节点集合建立当前最优传输路径;s4:对待传输的数据信号进行抑制信道噪声干扰的编码处理,得到编码后的数据信号;s5:按照当前最优传输路径对编码后的数据信号进行数据可靠传输。2.如权利要求1所述的一种无线传感网络可靠传输方法,其特征在于,所述s1步骤中构建传感器能量损耗模型,包括:构建传感器能量损耗模型,所述传感器能量损耗模型的输入为数据传输距离和数据发送量,输出为数据可靠传输需要消耗的传感器能量,其中传感器能量损耗模型的形式为:;;其中:表示传感器loc进行数据可靠传输所需消耗的传感器能量;表示传感器接收单位比特数据所消耗的传感器能量;表示传感器发送单位比特数据所消耗的传感器能量;表示传感器的感知直径,表示传感器loc的短距离通信阈值;表示数据可靠传输的传输距离,表示数据可靠传输的数据发送量;表示传感器loc中放大电路的放大系数;表示传感器loc进行数据可靠传输过程中的传输消耗能量。3.如权利要求2所述的一种无线传感网络可靠传输方法,其特征在于,所述s2步骤中根据传感器能量损耗模型确定最优数据传输中继节点数量,包括:在面积为m平方米的区域中部署n个传感器,构成无线传感网络中的n个传感器节点,并对n个传感器节点进行编号,编号结果依次为,则n个传感器节点的集合为:;其中:表示传感器节点的位置坐标;表示传感器节点中放大电路的放大系数;
获取待传输数据信号的数据量x,根据传感器能量损耗模型,确定无线传感网络中最优数据传输中继节点数量,其中最优数据传输中继节点数量的确定流程为:s21:设定最优数据传输中继节点数量为num,则num个数据传输中继节点在区域内的期望感知半径r为:;s22:计算得到num个最优数据传输中继节点进行数据可靠传输过程中所期望消耗的传感器能量:;;其中:表示将x比特的数据从期望中继节点传输到期望中继节点所期望消耗的传输消耗能量,将每个期望中继节点中放大电路的放大系数设置为1;表示第k个期望中继节点;表示num个期望中继节点接收并发送x比特的数据所消耗的传感器能量;表示预设的数据可靠传输距离;表示期望中继节点中放大电路的放大系数;表示期望中继节点的短距离通信阈值;s23:对传感器能量e中num求一阶导,并令求导结果为0,求解得到最优数据传输中继节点数量num。4.如权利要求3所述的一种无线传感网络可靠传输方法,其特征在于,所述s3步骤中以最优数据传输中继节点数量为约束,根据无线传感网络中节点的剩余能量和相邻跳数节点间的距离,计算并构建得到无线传感网络中的当前最优中继节点集合,包括:以最优数据传输中继节点数量为约束,根据无线传感网络中节点的剩余能量和相邻跳数节点间的距离,计算并构建得到无线传感网络中的当前最优中继节点集合,其中最优中继节点集合的构建流程为:s31:获取n个传感器节点的剩余能量,其中传感器节点的剩余能量为;s32:从n个传感器节点中随机选取num个传感器节点作为初始中继节点集合,则初始中继节点集合为:
;其中:表示初始中继节点集合中的第num个中继节点,表示的位置坐标,表示的剩余能量;表示初始中继节点集合对应的初始中继节点位置坐标集合;s33:构建适应度函数:;其中:表示输入适应度函数的变量值,即中继节点集合;表示预设的数据可靠传输距离;表示中继节点集合中第s个中继节点的剩余能量,表示当前n个中继节点的剩余能量总和,;表示在中继节点集合中第s个中继节点感知范围内的传感器节点集合,表示传感器节点集合的剩余能量总和,其中传感器节点感知范围即以传感器节点为中心,半径为的圆形范围;表示传感器节点集合中传感器节点的平均剩余能量;表示中继节点集合中任意两个位置相邻中继节点的最大距离;并记录;s34:设置当前算法迭代次数为v,最大迭代次数为max,v的初始值为0,则第v次迭代得到的中继节点集合为,对应的中继节点位置坐标集合为;s35:对中继节点位置坐标集合进行迭代更新:;其中:表示的迭代更新结果,为中继节点位置坐标集合中第s个中继节点位置坐标,;表示步长缩放因子,将其设置为0.1;在无线传感网络中的n个传感器节点中遍历得到中不存在且距离最近的传感器节点y,计算该节点y的被抛弃概率,并按该概率对传感器节点y进行抛
弃;若抛弃成功,则中继节点集合中的第s个中继节点为,否则中继节点集合中的第s个中继节点为传感器节点y,为传感器节点y的位置坐标;s36:记录中继节点集合的适应度函数值,令,返回步骤s35,直到达到最大迭代次数max;s37:选取max+1次迭代过程中适应度函数值最小的中继节点集合作为当前最优中继节点集合,其中表示当前最优中继节点集合中的第s个中继节点。5.如权利要求4所述的一种无线传感网络可靠传输方法,其特征在于,所述s3步骤中基于当前最优中继节点集合建立当前最优传输路径,包括:基于当前最优中继节点集合建立当前最优传输路径,其中当前最优传输路径的构建流程为:从起始位置出发,计算起始位置与目标位置之间的传输距离,若传输距离低于预设的距离阈值,则当前最优传输路径为起始位置-目标位置的传输路径;否则在当前最优中继节点遍历得到满足下式最小的中继节点:;其中:表示中继节点到起始位置的距离,表示中继节点到目标位置的距离;表示中继节点的剩余能量;计算中继节点到目标位置的传输距离;若传输距离低于预设的距离阈值,则当前最优传输路径为起始位置-中继节点-目标位置的传输路径;否则在当前最优中继节点遍历得到下一跳中继节点并计算得到下一跳中继节点到目标位置的传输距离,重复当前遍历步骤,直到下一跳中继节点到目标位置的传输距离低于预设的距离阈值,得到当前最优传输路径,其中下一跳中继节点满足下式:;其中:表示上一跳中继节点。6.如权利要求1所述的一种无线传感网络可靠传输方法,其特征在于,所述s4步骤中对待传输的数据信号进行抑制信道噪声干扰的编码处理,包括:对待传输的数据信号进行抑制信道噪声干扰的编码处理,其中编码处理流程为:
s41:获取待传输的数据信号,其中表示第个数据信号点,g表示待传输数据信号的数据信号点总数;s42:生成长度为g的动态序列码,其中所生成动态序列码为,等于1或-1;s43:生成编码处理后的数据信号:;其中:表示载波频率;表示编码调制速率;表示窗函数,在[0,1/a]上取1,其他位置取0;表示编码处理后的数据信号,t表示时序信息。7.如权利要求6所述的一种无线传感网络可靠传输方法,其特征在于,所述s5步骤中按照当前最优传输路径对编码后的数据信号进行数据传输,包括:按照当前最优传输路径对编码后的数据信号进行数据传输,直到目标位置接收到编码后的数据信号;目标位置对编码后的数据信号进行短时傅里叶变换处理,并计算得到短时傅里叶变换结果在不同时段的功率谱,选取功率谱随时间变化曲线中最尖锐的点所对应的时刻作为随机码元编码的初始时刻,得到数据信号的编码时域信息,并对该时域信息所对应的编码信号部分进行滤波器解码处理,解码后的数据信号,其中滤波器解码处理为低通滤波的方式。

技术总结
本发明涉及无线传感网络传输的技术领域,公开了一种无线传感网络可靠传输方法,所述方法包括:根据传感器能量损耗模型确定无线传感网络中最优数据传输中继节点数量;以最优数据传输中继节点数量为约束,计算并构建得到无线传感网络中的当前最优中继节点集合,并建立当前最优传输路径;对待传输的数据信号进行抑制信道噪声干扰的编码处理;按照当前最优传输路径对编码后的数据信号进行数据可靠传输。本发明通过筛选求解得到剩余能量足够且相邻跳数距离足够小的当前最优中继节点集合,从起始位置开始结合当前最优中继节点集合建立当前最优传输路径,并对待传输的数据信号进行抑制信道噪声干扰的编码处理,降低了同频道其他数据信号的干扰。信号的干扰。信号的干扰。


技术研发人员:曾建祥 何海鱼 欧阳路 王一平 曾超 刘名波 陈点点 李建 陶友成 黄依
受保护的技术使用者:湖南天联城市数控有限公司
技术研发日:2023.08.17
技术公布日:2023/9/16
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

飞机超市 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

相关推荐