一种基于多个回收仓库信息二氧化锆废料管控方法与流程

未命名 09-18 阅读:115 评论:0


1.本发明涉及工业废料处理技术领域,具体来说,涉及一种基于多个回收仓库信息二氧化锆废料管控方法。


背景技术:

2.随着工业生产的快速发展,废料处理和回收问题日益成为一个重要的环境和资源利用挑战。二氧化锆,一种具有高熔点、高强度和高硬度的陶瓷材料,广泛应用于制陶、磨料、耐火材料等领域。它的优异性能使得二氧化锆在众多工业领域中受到青睐,从而产生大量废料。现阶段可以将二氧化锆废料转化为有价值的资源,提取废料中的有用成分,减少废料的危害性,并将其重新应用于其他领域,从而实现资源的循环利用,因此对二氧化锆废料的合理管理对环境保护和资源利用具有重要意义。传统的二氧化锆废料管控方法主要依赖人工经验进行仓库布局优化、需求预测及回收策略制定,这在一定程度上限制了废料管理效率和准确性。
3.近年来,机器学习技术的发展为废料管控带来了新的解决方案。基于多个回收仓库信息的二氧化锆废料管控方法可以通过数据驱动的方式实现对废料仓库需求的精确预测和调度策略的优化。然而,在实际应用中如何有效地整合各个回收仓库的信息、构建合适的模型以及制定灵活的回收计划仍然面临挑战。
4.例如中国专利号201910982791.5公开了种工业废料存储管理系统,其包括废料存储装置、废料运送装置及管理装置,管理装置与废料存储装置以及废料运送装置通信连接,其能够对工业废料进行识别,并且按照废料种类对其进行归类放置,实现了智能化的分类管理。但是上述系统在具体应用时还存在以下不足:对于废料仓库,若没有对二氧化锆废料仓库的布局进行优化,可能导致空间利用率较低、物流成本较高以及作业环境不理想,且现有技术中往往没有对废料的短时需求进行预测,这样容易出现偏差,影响到废料回收计划的制定和执行,进而可能导致资源分配不合理、运输效率低下、客户满意度降低等问题。
5.针对相关技术中的问题,目前尚未提出有效的解决方案。


技术实现要素:

6.针对现有技术的不足,本发明提供了基于多个回收仓库信息二氧化锆废料管控方法,具备有效地提高废料管理效率,降低运营成本,并为实现环境保护和资源可持续利用做出贡献的优点,进而解决二氧化锆废料仓库空间利用率较低、没有对废料的短时需求进行预测的问题。
7.为实现上述有效地提高废料管理效率,降低运营成本,并为实现环境保护和资源可持续利用做出贡献的优点,本发明采用的具体技术方案如下:一种基于多个回收仓库信息二氧化锆废料管控方法,该方法包括以下步骤:s1、构建若干二氧化锆废料仓库,并对每个二氧化锆废料仓库的布局进行优化。
8.s2、收集二氧化锆废料仓库在预先设定的时间范围内的回收数据作为模拟数据,
并基于xgboost进行二氧化锆废料回收仓库的短时需求预测。
9.s3、根据短时需求预测结果,制定相应的二氧化锆废料回收计划。
10.s4、在二氧化锆废料回收过程中,根据实际需求情况对回收策略进行调整。
11.进一步的,所述构建若干二氧化锆废料仓库,并对每个二氧化锆废料仓库的布局进行优化包括以下步骤:s11、根据二氧化锆废料仓库的实际情况,收集各作业区域之间的物流数据;s12、利用系统布置设计方法分析物流数据,绘制作业区域位置关系相关图,确定各作业区域在二氧化锆废料仓库中的相对位置和距离,使得物流强度大的作业单位靠近,以减少物料运输时间和成本;s13、使用定量布置程序对二氧化锆废料仓库进行初始布局,并计算初始布置成本,并通过交换作业区域的位置来改进布局,降低布置成本。
12.进一步的,所述计算初始布置成本包括以下步骤:s131、计算各作业区域之间的距心;s132、计算各作业区域的距心间的直角距离,并获取各作业区域间综合月搬运量的对应数据;s133、计算初始布局的布置成本z的计算公式为:
13.式中,表示作业区域i’和作业区域j’的距心间的直角距离,表示作业区域i’和作业区域j’间的综合月搬运量;a表示作业区域的数量。
14.进一步的,所述收集二氧化锆废料仓库在预先设定的时间范围内的回收数据作为模拟数据,并基于xgboost进行二氧化锆废料回收仓库的短时需求预测包括以下步骤:s21、数据准备:收集各个二氧化锆废料回收仓库的回收日期、时间、仓库编号、回收量、当天天气信息,并将天气分为晴天、多云、雨天及大风天四种情况;s22、使用k-means聚类算法将二氧化锆废料回收仓库根据每日回收量向量分成若干类别;s23、使用pearson相关系数方法分析同一类别中不同二氧化锆废料回收仓库之间的相关性,并选择高度相关的二氧化锆废料回收仓库作为特征向量;s24、构建包括历史、时间、天气和空间因素在内的若干数量的特征的特征向量;s25、优化xgboost的目标函数并预测每个二氧化锆废料回收仓库的二氧化锆废料短期需求。
15.进一步的,所述使用k-means聚类算法将二氧化锆废料回收仓库根据每日回收量向量分成若干类别包括以下步骤:s221、使用dbi方法确定最佳簇的数量,并使用欧几里得距离作为距离度量,平方误差和作为聚类准则函数;s222、使用k-means聚类算法根据每个仓库每日回收量向量将仓库分成若干类别。
16.进一步的,所述使用欧几里得距离作为距离度量时,任意两个二氧化锆废料回收仓库a和b之间的距离公式为:
17.式中,ai表示二氧化锆废料回收仓库a第i个维度的值,bi表示二氧化锆废料回收仓库b第i个维度的值;k表示维度总数。
18.进一步的,所述使用pearson相关系数方法分析同一类别中不同仓库之间的相关性,并选择高度相关的仓库作为特征向量包括以下步骤:s231、对同一类别的每对二氧化锆废料回收仓库i和j,在相同时间范围内计算二氧化锆废料回收仓库i和j的二氧化锆废料回收量之间的pearson相关系数;s232、根据计算得到的pearson相关系数,评估二氧化锆废料回收仓库i和j之间的关联性;s233、使用0.5作为阈值,并确定pearson相关系数大于阈值的两个二氧化锆废料回收仓库作为高度相关的仓库。
19.进一步的,所述构建包括历史、时间、天气和空间因素在内的若干数量的特征的特征向量包括以下步骤:s241、提取二氧化锆废料回收仓库过去若干天的每日回收量;s242、使用独热编码表示星期一至星期日;s243、根据当天的天气情况,将其表示为一个数值特征;s244、使用独热编码表示寒假和暑假;s245、将特殊节假日表示为一个二值特征;s246、使用独热编码表示冬天、春天、夏天及秋天;s247、将与当前二氧化锆废料回收仓库高度相关的其它二氧化锆废料回收仓库的前1天二氧化锆废料回收量作为一个特征;s248、将s241-s247中的特征进行拼接,得到一个特征向量。
20.进一步的,所述优化xgboost的目标函数并预测每个二氧化锆废料回收仓库的二氧化锆废料短期需求包括以下步骤:s251、通过加法训练和正则化项优化目标函数,且在xgboost模型训练过程中,调整参数以获得结构简单且性能良好的树模型;s252、根据特征向量中的特征重要性评分,将特征按照重要性从高到低进行排序;s253、使用训练好的xgboost模型对每个回收仓库的二氧化锆废料短期需求进行预测。
21.进一步的,所述通过加法训练和正则化项优化目标函数,且在xgboost模型训练过程中,同时调整参数以获得结构简单且性能良好的树模型包括以下步骤:s2511、运用加法训练优化第一棵树,并在结束之后再优化第二棵树,直至优化完x棵树,同时首先假设模型初始估计值,每次添加一个新的树,迭代计算第n轮模型输出预测值;s2512、将模型正则化项定义为叶结点总数和叶节点权值平方和函数:
22.式中,ω(ft)表示正则化项,ft表示第t个cart回归树;t表示叶节点总数;w表示叶节点的权重,表示w的l2范数平方,m表示非零自然数;γ和λ是控制树复杂度的参数,γ和λ越大越希望获得结构简单的树。
23.与现有技术相比,本发明提供了基于多个回收仓库信息二氧化锆废料管控方法,具备以下有益效果:(1)本发明的基于多个回收仓库信息二氧化锆废料管控方法,可以有效地提高废料管理效率,降低运营成本,并为实现环境保护和资源可持续利用做出贡献。
24.(2)本发明通过构建若干二氧化锆废料仓库,并对每个二氧化锆废料仓库的布局进行优化,从而提高仓库的空间利用率、降低物流成本和改善作业环境,这有助于提高整体仓储效率,节省运营成本。且能够计算初始布局的布置成本,并交换作业区域的位置来改进布局,进一步的降低布置成本。
25.(3)本发明通过收集二氧化锆废料仓库在预先设定的时间范围内的回收数据作为模拟数据,并基于xgboost进行二氧化锆废料回收仓库的短时需求预测,从而对历史数据和关键特征的挖掘,构建精确度较高的预测模型,能够准确地预测仓库的短时需求,为后续的回收计划制定提供更可靠的依据,可以根据实际需求合理地分配运输资源、调整仓库开放时间等,从而提高运输效率、降低闲置资源,并提升客户满意度。通过xgboost算法进行短时需求预测,能够使预测结果更加可靠,速度更快。且构建包括历史、时间、天气和空间因素在内的若干数量的特征的特征向量,使得综合考虑多种因素能够更全面地把握需求变化的规律。这有助于提高模型的预测准确性,减少预测误差,分析哪些特征对预测结果影响最大,可以为进一步优化废料回收仓库运营提供参考。
附图说明
26.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
27.图1是根据本发明实施例的基于多个回收仓库信息二氧化锆废料管控方法的流程图。
具体实施方式
28.为进一步说明各实施例,本发明提供有附图,这些附图为本发明揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理,配合参考这些内容,本领域普通技术人员应能理解其他可能的实施方式以及本发明的优点,图中的组件并未按比例绘制,而类似的组件符号通常用来表示类似的组件。
29.根据本发明的实施例,提供了一种基于多个回收仓库信息二氧化锆废料管控方法。
30.现结合附图和具体实施方式对本发明进一步说明,如图1所示,根据本发明实施例的基于多个回收仓库信息二氧化锆废料管控方法,该方法包括以下步骤:s1、构建若干二氧化锆废料仓库,并对每个二氧化锆废料仓库的布局进行优化,以提高空间利用率、降低物流成本和改善作业环境。
31.在进一步的实施例中,所述构建若干二氧化锆废料仓库,并对每个二氧化锆废料仓库的布局进行优化包括以下步骤:s11、根据二氧化锆废料仓库的实际情况,收集各作业区域(例如:入库区、出库区、加工区、检验区等)之间的物流数据;s12、利用系统布置设计方法(slp)分析物流数据,绘制作业区域位置关系相关图,确定各作业区域在二氧化锆废料仓库中的相对位置和距离,使得物流强度大的作业单位靠近,以减少物料运输时间和成本;系统布置设计方法(slp,systematic layout planning)是一种结构化的方法,用于组织和安排生产设施、工作站、设备和人员,以提高生产效率并减少生产成本。这种方法通过分析生产流程、材料流动、设备布局和人员流动,来确定最佳的生产布局。slp可以应用于工厂、仓库、办公室等各种环境。
32.s13、使用定量布置程序(craft)对二氧化锆废料仓库进行初始布局,并计算初始布置成本,并通过交换作业区域的位置来改进布局,降低布置成本。定量布局程序(craft,computerized relative allocation of facilities technique)是一种计算机辅助的设施布局方法,用于优化生产设施、仓库或办公室的布局。craft通过迭代方式,调整设施之间的相对位置,以减少废料搬运成本和提高空间利用率。
33.对于二氧化锆废料仓库的初始布局,可以采用craft方法进行优化在进一步的实施例中,所述计算初始布置成本包括以下步骤:s131、计算各作业区域之间的距心;s132、计算各作业区域的距心间的直角距离,并获取各作业区域间综合月搬运量的对应数据;s133、计算初始布局的布置成本z的计算公式为:
34.式中,表示作业区域i’和作业区域j’的距心间的直角距离,表示作业区域i’和作业区域j’间的综合月搬运量;a表示作业区域的数量。
35.s2、收集二氧化锆废料仓库在预先设定的时间范围内的回收数据作为模拟数据,并基于xgboost进行二氧化锆废料回收仓库的短时需求预测。xgboost是一种高效、灵活且可扩展的梯度提升树算法。
36.在进一步的实施例中,所述收集二氧化锆废料仓库在预先设定的时间范围内的回收数据作为模拟数据,并基于xgboost进行二氧化锆废料回收仓库的短时需求预测包括以下步骤:s21、数据准备:收集各个二氧化锆废料回收仓库的回收日期、时间、仓库编号、回
收量、当天天气等信息,并将天气分为晴天、多云、雨天及大风天四种情况;s22、使用k-means聚类算法将二氧化锆废料回收仓库根据每日回收量向量分成若干类别;s23、使用pearson相关系数方法分析同一类别中不同二氧化锆废料回收仓库之间的相关性,并选择高度相关的二氧化锆废料回收仓库作为特征向量;pearson相关系数的取值范围为-1到1,其中,接近1表示两者之间呈正相关(即一个仓库的回收量增加时,另一个仓库的回收量也增加);接近-1表示呈负相关(一个仓库的回收量增加时,另一个仓库的回收量减少);接近0表示两者之间几乎没有相关性。
37.pearson相关系数r=cov(x,y)/[std(x)*std(y)]其中,cov(x,y)是向量x和y的协方差,std(x)和std(y)分别是x和y的标准差,x和y分别代表不同二氧化锆废料回收仓库的二氧化锆废料回收量。
[0038]
s24、构建包括历史、时间、天气和空间因素在内的若干数量的特征的特征向量;s25、优化xgboost的目标函数并预测每个二氧化锆废料回收仓库的二氧化锆废料短期需求。
[0039]
在进一步的实施例中,所述使用k-means聚类算法将二氧化锆废料回收仓库根据每日回收量向量分成若干类别包括以下步骤:s221、使用dbi(davies-bouldin指数)方法确定最佳簇的数量,并使用欧几里得距离作为距离度量,平方误差和作为聚类准则函数;s222、使用k-means聚类算法根据每个仓库每日回收量向量将仓库分成若干类别。
[0040]
在进一步的实施例中,所述使用欧几里得距离作为距离度量时,任意两个二氧化锆废料回收仓库a和b之间的距离公式为:
[0041]
式中,ai表示二氧化锆废料回收仓库a第i个维度的值,bi表示二氧化锆废料回收仓库b第i个维度的值;k表示维度总数。
[0042]
在进一步的实施例中,所述使用pearson相关系数方法分析同一类别中不同仓库之间的相关性,并选择高度相关的仓库作为特征向量包括以下步骤:s231、对同一类别的每对二氧化锆废料回收仓库i和j,在相同时间范围内(例如每天、每周等)计算二氧化锆废料回收仓库i和j的二氧化锆废料回收量之间的pearson相关系数;s232、根据计算得到的pearson相关系数,评估二氧化锆废料回收仓库i和j之间的关联性;s233、使用0.5作为阈值,并确定pearson相关系数大于阈值的两个二氧化锆废料回收仓库作为高度相关的仓库。
[0043]
在进一步的实施例中,所述构建包括历史、时间、天气和空间因素在内的若干数量的特征的特征向量包括以下步骤:s241、提取二氧化锆废料回收仓库过去若干天(例如14天)的每日回收量;
s242、使用独热编码表示星期一至星期日;s243、根据当天的天气情况,将其表示为一个数值特征;s244、使用独热编码表示寒假和暑假;s245、将特殊节假日表示为一个二值特征;s246、使用独热编码表示冬天、春天、夏天及秋天;s247、将与当前二氧化锆废料回收仓库高度相关的其它二氧化锆废料回收仓库的前1天二氧化锆废料回收量作为一个特征;s248、将s241-s247中的特征进行拼接,得到一个特征向量。
[0044]
在进一步的实施例中,所述优化xgboost的目标函数并预测每个二氧化锆废料回收仓库的二氧化锆废料短期需求包括以下步骤:s251、通过加法训练和正则化项优化目标函数,且在xgboost模型训练过程中,调整参数以获得结构简单且性能良好的树模型;s252、根据特征向量中的特征重要性评分,将特征按照重要性从高到低进行排序;s253、使用训练好的xgboost模型对每个回收仓库的二氧化锆废料短期需求进行预测。
[0045]
在进一步的实施例中,所述通过加法训练和正则化项优化目标函数,且在xgboost模型训练过程中,同时调整参数以获得结构简单且性能良好的树模型包括以下步骤:s2511、运用加法训练优化第一棵树,并在结束之后再优化第二棵树,直至优化完x棵树,同时首先假设模型初始估计值,每次添加一个新的树,迭代计算第n轮模型输出预测值;s2512、将模型正则化项定义为叶结点总数和叶节点权值平方和函数:
[0046]
式中,ω(ft)表示正则化项,ft表示第t个cart回归树;t表示叶节点总数;w表示叶节点的权重,表示w的l2范数平方,m表示非零自然数;γ和λ是控制树复杂度的参数,γ和λ越大越希望获得结构简单的树。
[0047]
xgboost算法中对树的复杂度项增加了一个l2正则化项,针对每个叶结点的得分增加l2平滑,目的也是为了避免过拟合。
[0048]
s3、根据短时需求预测结果,制定相应的二氧化锆废料回收计划。
[0049]
s4、在二氧化锆废料回收过程中,根据实际需求情况对回收策略进行调整。由于市场需求和生产情况可能发生变化,因此在二氧化锆废料回收过程中,需要根据实际需求情况对回收策略进行调整。如果发现实际需求与预测需求存在较大差异,可以根据实际情况调整回收策略。这可能包括增加或减少回收量、调整回收时间、改变回收地点等。
[0050]
综上所述,借助于本发明的上述技术方案,本发明的基于多个回收仓库信息二氧化锆废料管控方法,可以有效地提高废料管理效率,降低运营成本,并为实现环境保护和资源可持续利用做出贡献。本发明通过构建若干二氧化锆废料仓库,并对每个二氧化锆废料仓库的布局进行优化,从而提高仓库的空间利用率、降低物流成本和改善作业环境,这有助
于提高整体仓储效率,节省运营成本。且能够计算初始布局的布置成本,并交换作业区域的位置来改进布局,进一步的降低布置成本。本发明通过收集二氧化锆废料仓库在预先设定的时间范围内的回收数据作为模拟数据,并基于xgboost进行二氧化锆废料回收仓库的短时需求预测,从而对历史数据和关键特征的挖掘,构建精确度较高的预测模型,能够准确地预测仓库的短时需求,为后续的回收计划制定提供更可靠的依据,可以根据实际需求合理地分配运输资源、调整仓库开放时间等,从而提高运输效率、降低闲置资源,并提升客户满意度。通过xgboost算法进行短时需求预测,能够使预测结果更加可靠,速度更快。且构建包括历史、时间、天气和空间因素在内的若干数量的特征的特征向量,使得综合考虑多种因素能够更全面地把握需求变化的规律。这有助于提高模型的预测准确性,减少预测误差,分析哪些特征对预测结果影响最大,可以为进一步优化废料回收仓库运营提供参考。
[0051]
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

技术特征:
1.一种基于多个回收仓库信息二氧化锆废料管控方法,其特征在于,该方法包括以下步骤:s1、构建若干二氧化锆废料仓库,并对每个二氧化锆废料仓库的布局进行优化;s2、收集二氧化锆废料仓库在预先设定的时间范围内的回收数据作为模拟数据,并基于xgboost进行二氧化锆废料回收仓库的短时需求预测;s3、根据短时需求预测结果,制定相应的二氧化锆废料回收计划;s4、在二氧化锆废料回收过程中,根据实际需求情况对回收策略进行调整。2.根据权利要求1所述的一种基于多个回收仓库信息二氧化锆废料管控方法,其特征在于,所述构建若干二氧化锆废料仓库,并对每个二氧化锆废料仓库的布局进行优化包括以下步骤:s11、根据二氧化锆废料仓库的实际情况,收集各作业区域之间的物流数据;s12、利用系统布置设计方法分析物流数据,绘制作业区域位置关系相关图,确定各作业区域在二氧化锆废料仓库中的相对位置和距离,使得物流强度大的作业单位靠近,以减少物料运输时间和成本;s13、使用定量布置程序对二氧化锆废料仓库进行初始布局,并计算初始布置成本,并通过交换作业区域的位置来改进布局,降低布置成本。3.根据权利要求1所述的一种基于多个回收仓库信息二氧化锆废料管控方法,其特征在于,所述收集二氧化锆废料仓库在预先设定的时间范围内的回收数据作为模拟数据,并基于xgboost进行二氧化锆废料回收仓库的短时需求预测包括以下步骤:s21、数据准备:收集各个二氧化锆废料回收仓库的回收日期、时间、仓库编号、回收量、当天天气信息,并将天气分为晴天、多云、雨天及大风天四种情况;s22、使用k-means聚类算法将二氧化锆废料回收仓库根据每日回收量向量分成若干类别;s23、使用pearson相关系数方法分析同一类别中不同二氧化锆废料回收仓库之间的相关性,并选择高度相关的二氧化锆废料回收仓库作为特征向量;s24、构建包括历史、时间、天气和空间因素在内的若干数量的特征的特征向量;s25、优化xgboost的目标函数并预测每个二氧化锆废料回收仓库的二氧化锆废料短期需求。4.根据权利要求2所述的一种基于多个回收仓库信息二氧化锆废料管控方法,其特征在于,所述计算初始布置成本包括以下步骤:s131、计算各作业区域之间的距心;s132、计算各作业区域的距心间的直角距离,并获取各作业区域间综合月搬运量的对应数据;s133、计算初始布局的布置成本z的计算公式为:式中,表示作业区域i’和作业区域j’的距心间的直角距离,表示作业区域i’和作业区域j’间的综合月搬运量;a表示作业区域的数量。
5.根据权利要求3所述的一种基于多个回收仓库信息二氧化锆废料管控方法,其特征在于,所述使用k-means聚类算法将二氧化锆废料回收仓库根据每日回收量向量分成若干类别包括以下步骤:s221、使用dbi方法确定最佳簇的数量,并使用欧几里得距离作为距离度量,平方误差和作为聚类准则函数;s222、使用k-means聚类算法根据每个仓库每日回收量向量将仓库分成若干类别。6.根据权利要求3所述的一种基于多个回收仓库信息二氧化锆废料管控方法,其特征在于,所述使用pearson相关系数方法分析同一类别中不同仓库之间的相关性,并选择高度相关的仓库作为特征向量包括以下步骤:s231、对同一类别的每对二氧化锆废料回收仓库i和j,在相同时间范围内计算二氧化锆废料回收仓库i和j的二氧化锆废料回收量之间的pearson相关系数;s232、根据计算得到的pearson相关系数,评估二氧化锆废料回收仓库i和j之间的关联性;s233、使用0.5作为阈值,并确定pearson相关系数大于阈值的两个二氧化锆废料回收仓库作为高度相关的仓库。7.根据权利要求3所述的一种基于多个回收仓库信息二氧化锆废料管控方法,其特征在于,所述优化xgboost的目标函数并预测每个二氧化锆废料回收仓库的二氧化锆废料短期需求包括以下步骤:s251、通过加法训练和正则化项优化目标函数,且在xgboost模型训练过程中,调整参数以获得结构简单且性能良好的树模型;s252、根据特征向量中的特征重要性评分,将特征按照重要性从高到低进行排序;s253、使用训练好的xgboost模型对每个回收仓库的二氧化锆废料短期需求进行预测。8.根据权利要求7所述的一种基于多个回收仓库信息二氧化锆废料管控方法,其特征在于,所述通过加法训练和正则化项优化目标函数,且在xgboost模型训练过程中,同时调整参数以获得结构简单且性能良好的树模型包括以下步骤:s2511、运用加法训练优化第一棵树,并在结束之后再优化第二棵树,直至优化完x棵树,同时首先假设模型初始估计值,每次添加一个新的树,迭代计算第n轮模型输出预测值;s2512、将模型正则化项定义为叶结点总数和叶节点权值平方和函数:式中,ω(ft)表示正则化项,ft表示第t个cart回归树;t表示叶节点总数;w表示叶节点的权重,表示w的l2范数平方,m表示非零自然数;γ和λ是控制树复杂度的参数。

技术总结
本发明公开了一种基于多个回收仓库信息二氧化锆废料管控方法,该方法包括以下步骤:构建若干二氧化锆废料仓库,并对每个二氧化锆废料仓库的布局进行优化;收集二氧化锆废料仓库在预先设定的时间范围内的回收数据作为模拟数据,并基于Xgboost进行二氧化锆废料回收仓库的短时需求预测;根据短时需求预测结果,制定相应的二氧化锆废料回收计划;在二氧化锆废料回收过程中,根据实际需求情况对回收策略进行调整。本发明可以有效地提高废料管理效率,降低运营成本,并为实现环境保护和资源可持续利用做出贡献,预测仓库的短时需求,为后续的回收计划制定提供更可靠的依据,可以根据实际需求合理地分配运输资源、调整仓库开放时间。间。间。


技术研发人员:王兵 孟广川 周振帅 赵东凯 刘荣亮
受保护的技术使用者:山东盛太锆业资源有限公司
技术研发日:2023.06.15
技术公布日:2023/9/7
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

飞机超市 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

相关推荐