非侵入式负荷监测方法、装置、存储介质与流程

未命名 09-21 阅读:74 评论:0


1.本发明属于电力负荷监测领域,尤其是一种非侵入式负荷监测方法、装置、存储介质。


背景技术:

2.研究表明,通过向终端用户反馈能源使用信息,比如能源消耗方式和能源消费量,可以使居民家庭的功耗降低10%以上。因此,为最终用户提供这些用电细节信息,激励并支持更可持续的能源消费行为,正成为一个热门研究课题。为此,实现这一目标的一个简单策略是采用“侵入式负载监测”,即在建筑物中的每一个设备上安装单独的智能电表或传感器,此方案的成本十分高昂,并不适宜大规模部署。在此情况下,另一个解决方案“非侵入式负载监测”具有广阔的应用前景。
3.非侵入式负荷监测(non-intrusive load monitoring,nilm)是hart于1982年提出的一个概念。它可以提供电器级别的能源使用信息,而无需在每个负载中部署电表,这些信息可以进一步有利于能效监测电力消耗情况,帮助实现智能建筑等。在nilm的帮助下,消费者可以随时检查自家用电器使用情况,然后可以调整自己的行为来实现节电。从20世纪80年代到现在,大量的研究工作致力于利用信号分析与处理、机器学习和深度学习等各种技术构建负载监测算法。nilm的原始方法是使用收集的有功功率和无功功率增量作为负载特征向量,然后使用这些信息和传统的聚类算法来识别负载。当每个用电负载的有功功率和无功功率特性都是唯一时,这种方法可以达到令人满意的效果。然而,随着社会的快速发展,电力负荷的类型不断增加,许多负荷的功率特性在特征空间中存在重叠。因此,仅使用功率特征的负载监测方法的准确性也有所下降。为了获得更好的效果,开发了更多的电力负荷特征。例如随着采样设备和图像处理技术的发展,通过使用深度学习等算法,发现v-i轨迹图像对负荷识别是有效的。尽管v-i轨迹比其它负载特征具有更好的识别效果,但它还不足以区分所有电器,因为获得v-i轨迹时需要进行归一化处理,无法反映功率特征。
4.为了开发一种对计算空间和内存空间要求度低,且不需要对电器模型进行训练的nilm方法,提出本发明方法。


技术实现要素:

5.本发明的目的在于克服现有技术的不足之处,提供一种非侵入式负荷监测方法、装置及存储介质。此发明可以在不需要训练的情况下实现对电力消耗信息的分解和对电器的负荷监测,为电力部门和消费者提供用电细节信息,帮助进行能源管理与节约。
6.本发明解决技术问题所采用的技术方案是:本发明的第一方面是提供了一种非侵入式负荷监测方法,包括以下步骤:s1:基于采集的单个电器的不同负荷特征,建立典型电器模型,构建电器负荷特征数据库;s2:对于用户的聚合电力负荷数据,执行事件检测;
s3:对于每一事件序列进行特征提取,获得未知电器的负荷特征;s4:基于s1建立的电器负荷特征数据库,采用熵权法确定各个负荷特征的特征权重;s5:将每一事件的负荷特征作为目标解,结合s4中得到的特征权重,通过topsis法计算出数据库中各电器与未知电器的相似度;
7.s6:确定数据库中与未知电器相似度最高的电器,并将未知电器辨识为此类电器,完成负荷辨识。
8.进一步地,s1中,采集各单个电器运行数据构建负荷特征数据库,不对电器模型进行训练。
9.进一步地,s2中,通过功率变化和电流变化是否大于阈值来综合判断负荷事件是否发生。
10.进一步地,s3中,未知电器的负荷特征包括稳态特征和暂态特征,其中稳态特征包括有功功率和无功功率,暂态特征包括电压-电流轨迹特性以及谐波特性。
11.进一步地,所述有功功率的计算公式为:
12.;
13.其中,为事前对应周期计算得到的有功功率,为事后对应周期计算得到的有功功率,为次谐波有功功率分量,则为谐波次数,为次谐波电压有效值,为次谐波电流有效值,为功率因数角;
14.所述无功功率的计算公式为:
15.;
16.其中,为事前对应周期计算得到的无功功率,为事后对应周期计算得到的无功功率,为次谐波无功分量;
17.所述谐波特性采用2~15次的谐波;
18.所述电压-电流轨迹特性的计算公式为:
19.;
20.其中,为电压变化序列,为电流变化序列,为事前周期对应的电压序列,为事前周期对应的电流序列,为事后周期对应的电压序列,为事后周期对应的电流序列;
21.通过电压变化序列和电流变化序列绘制电压-电流轨迹。
22.进一步地,采用的电压-电流轨迹的特征包括:封闭面积、中段峰值及中线斜率。
23.进一步地,所述熵权法具体步骤如下:
24.a1将个评价电器的个初始评价特征指标数据构成初始矩阵;
25.;
26.其中,;,表示未知电器与数据库中第个电器在第个特征上的相似度值,计算公式为:
27.;
28.其中,表示未知电器在第个特征上取值;表示数据库中第个电器在第个特征上取值,值越大,表示两个电器相同的可能性就越大;
29.a2对初始矩阵进行标准化处理,得到标准化矩阵;
30.;
31.其中,;,为经过标准化后的数值;a3计算每个特征对应的信息熵数值;
32.;
33.其中,为特征的信息熵,为电器的特征在所有电器的特征中的占比;
34.a4获得特征权重矩阵;
35.;
36.其中,为特征的权重,。
37.进一步地,通过topsis法计算出数据库中各电器与未知电器的相似度的具体步骤如下:
38.b1结合各评价指标的特征权重矩阵,构造加权规范化矩阵;
39.;
40.其中,为未知电器与电器在特征上的单个加权评价数值;
41.b2确定理想解,理想解分为正理想解和负理想解;
42.;
43.其中,为所有电器在特征的最优值,为所有电器在特征的最劣值;
44.b3计算各个方案分别与正理想解、负理想解的距离,
45.;
46.其中,为电器到正理想解的距离,为电器到负理想解的距离;b4计算各个方案与理想解的相似度,
47.;
48.其中,为电器到理想解的最终距离。
49.本发明的第二方面是提供了实现上述非侵入式负荷监测方法的非侵入式负荷监测装置,包括:数据库构建模块,基于采集的单个电器的不同负荷特征,建立典型电器模型,构建电器负荷特征数据库;检测模块,对于用户的聚合电力负荷数据,执行事件检测;特征提取模块,对于每一事件序列进行特征提取,获得未知电器的负荷特征;权重确定模块,基于s1建立的电器负荷特征数据库,采用熵权法确定各个负荷特征的特征权重;相似度判断模块,将每一事件的负荷特征作为目标解,结合s4中得到的特征权重,通过topsis法计算出数据库中各电器与未知电器的相似度;
50.负荷辨识模块,确定数据库中与未知电器相似度最高的电器,并将未知电器辨识为此类电器,完成负荷辨识。
51.本发明的第三方面是提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序用于使所述计算机执行所述的非侵入式负荷监测方法。
52.本发明的优点和积极效果是:
53.本发明方法对计算空间和内存空间要求度低,不需要提前对电器模型进行训练即可完成对电器负荷的识别与监测,适合更广泛的应用场景。
附图说明
54.图1为本发明方法流程图。
具体实施方式
55.下面通过具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。
56.如图1所示,本发明提出的一种非侵入式负荷监测方法,包括以下步骤:
57.s1:基于采集的单个电器的不同负荷特征,建立典型电器模型,构建电器负荷特征
数据库。
58.电器负荷特征数据库为一个负载特征表,以便分解算法能够确定测量到的电器信号是否与数据库中的电器匹配。负荷特征数据库在nilm系统中起着至关重要的作用,因为它是负荷辨识所必需的。在所提出的方案中,将存储每个电器的四个负荷特征取值,即有功功率、无功功率、谐波特性、以及电压-电流轨迹特性。
59.s2:对于用户的聚合电力负荷数据,执行事件检测。
60.非侵入式负荷监测需要处理聚合状态的电力负荷数据,本方法通过功率变化和电流变化是否大于阈值来综合判断负荷事件是否发生,即当公式(1)成立时,才认为存在电器切换导致负荷事件发生。
61.(1);
62.其中,为相邻周期功率变化量,为相邻周期电流变化量,为功率阈值,为电流阈值。
63.s3:对于每一事件序列进行特征提取,获得未知电器的负荷特征。
64.根据任一事件,可以确定其事前周期与事后周期。
65.有功功率:
[0066][0067]
其中,为事前对应周期计算得到的有功功率,为事后对应周期计算得到的有功功率,为次谐波有功功率分量,为谐波次数,为次谐波电压有效值,为次谐波电流有效值,为功率因数角。
[0068]
无功功率:
[0069][0070]
其中,为事前对应周期计算得到的无功功率,为事后对应周期计算得到的无功功率,为次谐波无功分量。
[0071]
谐波特性:
[0072]
为了获得谐波含量,采用了快速傅立叶变换(fast fourier transform,fft)。由于大多数家用电器的谐波含量在15次谐波之后并不显著,因此研究2次到15次的谐波。
[0073]
电压-电流轨迹特性:
[0074]
取事前周期对应的电压序列和电流序列
,其中为一个周期的采样点个数。同理,取事后周期对应的电压序列和电流序列。则可以获得因电器切换而导致的电压电流变化序列:
[0075][0076]
为电压变化序列,为电流变化序列。
[0077]
随后,可以通过电压变化序列和电流变化序列绘制电压-电流轨迹,即轨迹。进一步,可以用轨迹的特征来描述轨迹的形状并表示负载特征,本方案使用的轨迹的特征主要包括:1)封闭面积:表示轨迹所包围的区域,与电器的电压电流之间的相位差大小有关;2)中段峰值:轨迹中间部分间距峰值;
[0078]
3)中线斜率:轨迹中间部分的斜率大小。
[0079]
s4:基于s1建立的电器负荷特征数据库,利用熵权法确定各个负荷特征的特征权重。
[0080]
熵权法是一种应用于多指标的客观赋权方法,其基本思路在于利用信息之间的差异性进行客观赋权,主要依赖数据本身的离散性因而不易受人为主观因素的影响。具体步骤如下:
[0081]
a1针对某一负荷事件对应的电器辨识决策问题,若数据库中共有个备选电器组成解集。在衡量每个备选电器与未知电器的决策方案优劣时,需要从个负荷特征方面进行综合评价,则个评价电器的个初始评价特征指标数据构成初始矩阵。
[0082][0083]
其中,;,表示未知电器与数据库中第个电器在第个特征上的相似度值,计算公式为:
[0084][0085]
其中,表示未知电器在第个特征上取值,表示数据库中第个电器在第个特征上取值。值越大,表示两个电器相同的可能性就越大。
[0086]
a2对初始矩阵进行标准化处理,得到标准化矩阵。
[0087][0088]
其中,;,为经过标准化后的数值。
[0089]
a3计算每个特征对应的信息熵数值。
[0090][0091]
其中,为特征的信息熵,为电器的特征在所有电器的特征中的占比。
[0092]
a4获得特征权重矩阵。
[0093][0094]
其中,为特征的权重,。
[0095]
s5:将每一事件提取的负荷特征作为目标解,结合s4中得到的特征权重,通过topsis法计算出数据库中各电器与未知电器的相似度。
[0096]
topsis(technique for order preference by similarity to ideal solution)法是一种多目标决策分析方法,又称为优劣解距离法。其主要思想是通过计算评价对象与理想化目标和负理想化目标的接近程度对评价对象进行排序以确定其相对优劣程度,从而选择最佳方案。
[0097]
具体步骤如下:
[0098]
b1结合各评价指标的特征权重矩阵,构造加权规范化矩阵。
[0099][0100]
其中,为未知电器与电器在特征上的单个加权评价数值。
[0101]
b2确定理想解,理想解分为正理想解和负理想解,评价指标可以分为效益性指标和成本性指标。
[0102][0103]
其中,为所有电器在特征的最优值,为所有电器在特征的最劣值。
[0104]
b3计算各个方案分别与正理想解、负理想解的距离。
[0105][0106]
其中,为电器到正理想解的距离,为电器到负理想解的距离。
[0107]
b4计算各个方案与理想解的相似度。
[0108][0109]
其中,为电器到理想解的最终距离。
[0110]
s6:确定数据库中与未知电器相似度最高的电器,并将未知电器辨识为此类电器,完成负荷辨识。
[0111]
对于任一由电器状态切换引起的负荷事件,通过topsis法对其各项负荷特征进行综合判断,将其归入数据库中对应值最大的电器,完成负荷辨识。
[0112]
本发明进一步提供了实现上述非侵入式负荷监测方法的非侵入式负荷监测装置,包括:数据库构建模块,基于采集的单个电器的不同负荷特征,建立典型电器模型,构建电器负荷特征数据库;检测模块,对于用户的聚合电力负荷数据,执行事件检测;特征提取模块,对于每一事件序列进行特征提取,获得未知电器的负荷特征;权重确定模块,基于s1建立的电器负荷特征数据库,采用熵权法确定各个负荷特征的特征权重;相似度判断模块,将每一事件的负荷特征作为目标解,结合s4中得到的特征权重,通过topsis法计算出数据库中各电器与未知电器的相似度;
[0113]
负荷辨识模块,确定数据库中与未知电器相似度最高的电器,并将未知电器辨识为此类电器,完成负荷辨识。
[0114]
本发明进一步提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序用于使所述计算机执行所述的非侵入式负荷监测方法。
[0115]
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

技术特征:
1.一种非侵入式负荷监测方法,其特征在于,包括以下步骤:s1:基于采集的单个电器的不同负荷特征,建立典型电器模型,构建电器负荷特征数据库;s2:对于用户的聚合电力负荷数据,执行事件检测;s3:对于每一事件序列进行特征提取,获得未知电器的负荷特征;s4:基于s1建立的电器负荷特征数据库,采用熵权法确定各个负荷特征的特征权重;s5:将每一事件的负荷特征作为目标解,结合s4中得到的特征权重,通过topsis法计算出数据库中各电器与未知电器的相似度;s6:确定数据库中与未知电器相似度最高的电器,并将未知电器辨识为此类电器,完成负荷辨识。2.根据权利要求1所述的方法,其特征在于,s1中,采集各单个电器运行数据构建负荷特征数据库,不对电器模型进行训练。3.根据权利要求2所述的方法,其特征在于,s2中,通过功率变化和电流变化是否大于阈值来综合判断负荷事件是否发生。4.根据权利要求3所述的方法,其特征在于,s3中,未知电器的负荷特征包括稳态特征和暂态特征,其中稳态特征包括有功功率和无功功率,暂态特征包括电压-电流轨迹特性以及谐波特性。5.根据权利要求4所述的方法,其特征在于,所述有功功率的计算公式为:;其中,为事前对应周期计算得到的有功功率,为事后对应周期计算得到的有功功率,为次谐波有功功率分量,为谐波次数,为次谐波电压有效值,为次谐波电流有效值,为功率因数角;所述无功功率的计算公式为:;其中,为事前对应周期计算得到的无功功率,为事后对应周期计算得到的无功功率,为次谐波无功分量;所述谐波特性采用2~15次的谐波;所述电压-电流轨迹特性的计算公式为:
;其中,为电压变化序列,为电流变化序列,为事前周期对应的电压序列,为事前周期对应的电流序列,为事后周期对应的电压序列,为事后周期对应的电流序列;通过电压变化序列和电流变化序列绘制电压-电流轨迹。6.根据权利要求5所述的方法,其特征在于,采用的电压-电流轨迹的特征包括:封闭面积、中段峰值及中线斜率。7.根据权利要求6所述的方法,其特征在于,所述熵权法具体步骤如下:a1将个评价电器的个初始评价特征指标数据构成初始矩阵;;其中,;,表示未知电器与数据库中第个电器在第个特征上的相似度值,计算公式为:;其中,表示未知电器在第个特征上取值,表示数据库中第个电器在第个特征上取值,值越大,表示两个电器相同的可能性就越大;a2对初始矩阵进行标准化处理,得到标准化矩阵;;其中,;,为经过标准化后的数值;
a3计算每个特征对应的信息熵数值;;其中,为特征的信息熵,为电器的特征在所有电器的特征中的占比;a4获得特征权重矩阵;;其中,为特征的权重,。8.根据权利要求7所述的方法,其特征在于,通过topsis法计算出数据库中各电器与未知电器的相似度的具体步骤如下:b1结合各评价指标的特征权重矩阵,构造加权规范化矩阵;;其中,为未知电器与电器在特征上的单个加权评价数值;b2确定理想解,理想解分为正理想解和负理想解;;其中,为所有电器在特征的最优值,为所有电器在特征的最劣值;b3计算各个方案分别与正理想解、负理想解的距离,
;其中,为电器到正理想解的距离,为电器到负理想解的距离;b4计算各个方案与理想解的相似度,;其中,为电器到理想解的最终距离。9.根据权利要求1-8任一权利要求所述非侵入式负荷监测方法的非侵入式负荷监测装置,其特征在于,包括:数据库构建模块,基于采集的单个电器的不同负荷特征,建立典型电器模型,构建电器负荷特征数据库;检测模块,对于用户的聚合电力负荷数据,执行事件检测;特征提取模块,对于每一事件序列进行特征提取,获得未知电器的负荷特征;权重确定模块,基于s1建立的电器负荷特征数据库,采用熵权法确定各个负荷特征的特征权重;相似度判断模块,将每一事件的负荷特征作为目标解,结合s4中得到的特征权重,通过topsis法计算出数据库中各电器与未知电器的相似度;负荷辨识模块,确定数据库中与未知电器相似度最高的电器,并将未知电器辨识为此类电器,完成负荷辨识。10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序用于使所述计算机执行权利要求1-8的任一项所述的非侵入式负荷监测方法。

技术总结
本发明属于电力负荷监测领域,涉及一种非侵入式负荷监测方法、装置、存储介质。基于采集的单个电器的不同负荷特征,建立典型电器模型,构建电器负荷特征数据库;对于用户的聚合电力负荷数据,执行事件检测;对于每一事件序列进行特征提取,获得未知电器的负荷特征;采用熵权法确定各个负荷特征的特征权重;将每一事件的负荷特征作为目标解,通过TOPSIS法计算出数据库中各电器与未知电器的相似度;确定数据库中与未知电器相似度最高的电器,并将未知电器辨识为此类电器,完成负荷辨识。本发明方法对计算空间和内存空间要求度低,不需要提前对电器模型进行训练即可完成对电器负荷的识别与监测,适合更广泛的应用场景。适合更广泛的应用场景。适合更广泛的应用场景。


技术研发人员:李利刚 陈建强 刘盛 罗世超 王昊川 李凤朝 王康丽 张樱譞 胡清婕 虞俊玮 高源 韩海 郑炳嘉 王蒙 刘上 谢学磊 刘振凯 关婧莹
受保护的技术使用者:国网天津市电力公司 国家电网有限公司
技术研发日:2023.08.24
技术公布日:2023/9/20
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

飞机超市 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

相关推荐