核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法与流程
未命名
09-22
阅读:102
评论:0

1.本公开涉及核电汽轮机技术领域,特别涉及一种核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法、装置、电子设备、存储介质和平台。
背景技术:
2.目前,随着能源短缺问题的加重,人们急需开发新能源来满足人们的能源需求,核电是清洁能源,无二氧化碳排放,环境影响小;核电是高效能源,能量密度高,资源消耗少;核电是稳定能源,无间歇性,利用小时数长且具有稳定的供电能力;核电是安全能源,事故发生可能性小,是增强能源安全的重要选项。核电汽轮机是核电技术中的重要装备。相关技术中,需要对核电汽轮机进行裂纹扩展寿命安全性监控,以确保核电汽轮机的正常运行,然而,核电汽轮机的裂纹扩展寿命安全性监控存在没有考虑应力腐蚀的问题。
技术实现要素:
3.本公开旨在至少在一定程度上解决上述技术中的技术问题之一。
4.为此,本公开的第一个目的在于提出一种核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法。
5.本公开的第二个目的在于提出一种核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控装置。
6.本公开的第三个目的在于提出一种电子设备。
7.本公开的第四个目的在于提出一种计算机可读存储介质。
8.本公开的第五个目的在于提出一种适用于核电汽轮机的监控平台。
9.本公开第一方面实施例提出了一种核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法,包括:获取核电汽轮机的汽缸的相控阵检测裂纹深度,并获取不同裂纹扩展类别下的所述汽缸的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命;基于所述相控阵检测裂纹深度,获取所述汽缸的裂纹扩展类别,并基于所述汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到所述汽缸的裂纹扩展日历寿命;基于所述裂纹扩展日历寿命,对所述汽缸进行裂纹扩展寿命安全性监控。
10.本公开第二方面实施例提出了一种核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控装置,包括:第一获取模块,用于获取核电汽轮机的汽缸的相控阵检测裂纹深度,并获取不同裂纹扩展类别下的所述汽缸的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命;第二获取模块,用于基于所述相控阵检测裂纹深度,获取所述汽缸的裂纹扩展类别,并基于所述汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到所述汽缸的裂纹扩展日历寿命;监控模块,用于基于所述裂纹扩展日历寿命,对所述汽缸进行裂纹扩展寿命安全性监控。
11.本公开第三方面实施例提出了一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如本公开第一
方面实施例所述的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法。
12.本技术第四方面实施例提出了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时,实现如本公开第一方面实施例所述的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法。
13.本技术第五方面实施例提出了一种适用于核电汽轮机的监控平台,包括如本公开第二方面实施例所述的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控装置;或者如本公开第三方面实施例所述的电子设备;或者如本公开第四方面实施例所述的计算机可读存储介质。
14.本公开实施例提供的技术方案至少带来以下有益效果:获取核电汽轮机的汽缸的相控阵检测裂纹深度,并获取不同裂纹扩展类别下的汽缸的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,基于相控阵检测裂纹深度,获取汽缸的裂纹扩展类别,并基于汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到汽缸的裂纹扩展日历寿命,基于裂纹扩展日历寿命,对汽缸进行裂纹扩展寿命安全性监控。由此,可综合考虑到应力腐蚀、低周疲劳对汽缸的寿命的影响,以对汽缸进行裂纹扩展寿命安全性监控,以保证核电汽轮机汽缸的长寿命安全运行。
15.应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
16.本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
17.图1为根据本公开一个实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法的流程示意图;
18.图2为根据本公开另一个实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法的流程示意图;
19.图3为根据本公开一个实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法中获取应力腐蚀裂纹扩展寿命的流程示意图;
20.图4为根据本公开另一个实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法中获取应力腐蚀裂纹扩展寿命的流程示意图;
21.图5为根据本公开一个实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法中获取低周疲劳裂纹扩展寿命的流程示意图;
22.图6为根据本公开另一个实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法的流程示意图;
23.图7为根据本公开另一个实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法的流程示意图;
24.图8为根据本公开另一个实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法的流程示意图;
25.图9为根据本公开一个实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控装置的结构示意图;
26.图10为根据本公开一个实施例的电子设备的结构示意图。
具体实施方式
27.下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
28.下面结合附图来描述本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法、装置、电子设备、存储介质和平台。
29.图1为根据本公开一个实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法的流程示意图。
30.如图1所示,本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法,包括:
31.s101,获取核电汽轮机的汽缸的相控阵检测裂纹深度,并获取不同裂纹扩展类别下的汽缸的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命。
32.需要说明的是,本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法可以由本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控装置执行,本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控装置可以配置在任一适用于核电汽轮机的监控平台中,以执行本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法。
33.需要说明的是,相控阵检测裂纹深度指的是对汽缸进行相控阵检测,得到的汽缸的裂纹深度。相控阵检测可采用相关技术中的任一相控阵检测方法来实现。
34.在一种实施方式中,获取核电汽轮机的汽缸的相控阵检测裂纹深度,包括通过相控阵超声探伤仪和相控阵探头,对汽缸进行相控阵检测,得到相控阵检测裂纹深度,若对汽缸进行相控阵检测没有发现裂纹,给定相控阵检测裂纹深度为设定值。应说明的是,对设定值不做过多限定,比如,可为0.002m(米)。
35.比如,某型号1000mw核电汽轮机a的1号低压内缸,内缸材料为q235b,在水蒸气中含有naoh或凝汽器泄露海水等情况下有发生应力腐蚀开裂的倾向。该低压内缸寿命薄弱部位是低压内缸与第二级抽汽管道连接部位,第二级抽汽管与低压内缸连接部位的结构不连续处结构过渡圆角半径为20mm。该部位工作在过热蒸汽与湿蒸汽的过渡区,饱和蒸汽线(wilson)附近,容易发生应力腐蚀开裂。在核电汽轮机a的制造阶段,对核电汽轮机a的1号低压内缸进行相控阵无损检测,没有发现裂纹,在相控阵无损检测没有发现裂纹的情况下,给定核电汽轮机a的1号低压内缸与第二级抽汽管道连接部位裂纹深度ai=2mm=0.002m。
36.比如,某型号1000mw核电汽轮机b的2号低压内缸,内缸材料为q235b,在水蒸气中含有naoh或凝汽器泄露海水等情况下有发生应力腐蚀开裂的倾向。该低压内缸寿命薄弱部位是低压内缸与第二级抽汽管道连接部位,第二级抽汽管与低压内缸连接部位的结构不连续处结构过渡圆角半径为20mm。该部位工作在过热蒸汽与湿蒸汽的过渡区,饱和蒸汽线(wilson)附近,容易发生应力腐蚀开裂。在核电汽轮机b的制造阶段,对核电汽轮机b的2号低压内缸进行相控阵无损检测,得到核电汽轮机b的2号低压内缸与第二级抽汽管道连接部位裂纹深度ai=5mm=0.005m。
37.比如,某型号1000mw核电汽轮机c运行20年,在计划大修中对核电汽轮机c的1号低压内缸进行相控阵无损检测以及裂纹扩展寿命安全性监控。低压内缸材料为q235b,在水蒸气中含有naoh或凝汽器泄露海水等情况下有发生应力腐蚀开裂的倾向。该低压内缸寿命薄弱部位是低压内缸与第二级抽汽管道连接部位,第二级抽汽管与低压内缸连接部位的结构不连续处结构过渡圆角半径为20mm。该部位工作在过热蒸汽与湿蒸汽的过渡区,饱和蒸汽线(wilson)附近,容易发生应力腐蚀开裂。在核电汽轮机c的使用阶段,对核电汽轮机c的1号低压内缸进行相控阵无损检测,得到核电汽轮机c的1号低压内缸与第二级抽汽管道连接部位裂纹深度ai=5mm=0.005m。
38.比如,某型号1000mw核电汽轮机d运行20年,在计划大修中对核电汽轮机d的2号低压内缸进行相控阵无损检测以及裂纹扩展寿命安全性监控。低压内缸材料为q235b,在水蒸气中含有naoh或凝汽器泄露海水等情况下有发生应力腐蚀开裂的倾向。核电汽轮d的2号低压内缸寿命薄弱部位是低压内缸与第二级抽汽管道连接部位,第二级抽汽管与低压内缸连接部位的结构不连续处结构过渡圆角半径为20mm。该部位工作在过热蒸汽与湿蒸汽的过渡区,饱和蒸汽线(wilson)附近,容易发生应力腐蚀开裂。在核电汽轮机d的使用阶段,对核电汽轮机d的2号低压内缸进行相控阵无损检测,得到核电汽轮机d的2号低压内缸与第二级抽汽管道连接部位裂纹深度ai=10mm=0.010m。
39.需要说明的是,应力腐蚀裂纹扩展寿命指的是汽缸承受的破坏类别包括应力腐蚀时,汽缸的裂纹扩展寿命,低周疲劳裂纹扩展寿命指的是汽缸承受的破坏类别包括低周疲劳时,汽缸的裂纹扩展寿命。
40.需要说明的是,获取汽缸的应力腐蚀裂纹扩展寿命、低周疲劳裂纹扩展寿命,均可采用相关技术来实现,这里不做过多限定。
41.在一种实施方式中,获取不同裂纹扩展类别下的汽缸的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,包括确定与目标裂纹扩展寿命、裂纹扩展类别匹配的寿命基础数据,基于寿命基础数据,得到裂纹扩展类别下的目标裂纹扩展寿命。其中,目标裂纹扩展寿命为应力腐蚀裂纹扩展寿命、低周疲劳裂纹扩展寿命中的任一种。
42.需要说明的是,对寿命基础数据不做过多限定,比如,可包括裂纹扩展尺寸集合、汽缸的应力计算基础数据、材料试验基础数据等。
43.s102,基于相控阵检测裂纹深度,获取汽缸的裂纹扩展类别,并基于汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到汽缸的裂纹扩展日历寿命。
44.在一种实施方式中,基于相控阵检测裂纹深度,获取汽缸的裂纹扩展类别,包括获取相控阵检测裂纹深度处于的设定区间,基于设定区间和裂纹扩展类别之间的映射关系,得到汽缸的裂纹扩展类别。可以理解的是,可预先为相控阵检测裂纹深度划分多个设定区间,不同的设定区间可映射不同的裂纹扩展类别,也可映射相同的裂纹扩展类别。
45.比如,基于相控阵检测裂纹深度,获取汽缸的裂纹扩展类别,包括若相控阵检测裂纹深度处于第一设定区间,将第一裂纹扩展类别确定为汽缸的裂纹扩展类别,或者,若相控阵检测裂纹深度处于第二设定区间,将第二裂纹扩展类别确定为汽缸的裂纹扩展类别。
46.在一种实施方式中,基于汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到汽缸的裂纹扩展日历寿命,包括将汽缸的裂纹扩展类别下的应力
腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,输入设定模型中,由设定模型输出裂纹扩展日历寿命。应说明的是,对设定模型不做过多限定,比如,可包括深度学习模型。
47.在一种实施方式中,基于汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到汽缸的裂纹扩展日历寿命,包括基于汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到汽缸的每个阶段的日历寿命,将汽缸的每个阶段的日历寿命的和值,确定为汽缸的裂纹扩展日历寿命。应说明的是,阶段指的是汽缸的裂纹扩展阶段,阶段的数量为多个,汽缸的不同的相控阵检测裂纹深度和不同的裂纹扩展尺寸集合可对应不同的类别和不同的阶段。
48.s103,基于裂纹扩展日历寿命,对汽缸进行裂纹扩展寿命安全性监控。
49.在一种实施方式中,基于裂纹扩展日历寿命,对汽缸进行裂纹扩展寿命安全性监控,包括获取汽缸的监控判据值,若裂纹扩展日历寿命大于或者等于监控判据值,确定汽缸未出现安全异常,若裂纹扩展日历寿命小于监控判据值,确定汽缸出现安全异常。
50.在一些例子中,确定汽缸出现安全异常之后,还包括生成用于指示汽缸出现安全异常的指示信息,以及时告知用户汽缸出现安全异常。
51.在一些例子中,可预先建立汽缸的型号、监控判据值之间的映射关系,获取汽缸的监控判据值,包括基于汽缸的型号,在上述映射关系中查询到监控判据值,并将查询到的监控判据值确定为汽缸的监控判据值。
52.综上,根据本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法,获取核电汽轮机的汽缸的相控阵检测裂纹深度,并获取不同裂纹扩展类别下的汽缸的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,基于相控阵检测裂纹深度,获取汽缸的裂纹扩展类别,并基于汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到汽缸的裂纹扩展日历寿命,基于裂纹扩展日历寿命,对汽缸进行裂纹扩展寿命安全性监控。由此,可综合考虑到应力腐蚀、低周疲劳对汽缸的寿命的影响,以对汽缸进行裂纹扩展寿命安全性监控,以保证核电汽轮机汽缸的长寿命安全运行。
53.图2为根据本公开另一个实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法的流程示意图。
54.如图2所示,本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法,包括:
55.s201,获取核电汽轮机的汽缸的相控阵检测裂纹深度,并获取不同裂纹扩展类别下的汽缸的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命。
56.步骤s201的相关内容,可参见上述实施例,这里不再赘述。
57.s202,获取汽缸的裂纹扩展尺寸集合。
58.需要说明的是,对裂纹扩展尺寸集合不做过多限定,比如,可包括应力腐蚀裂纹扩展尺寸门槛值a
scc
、核电汽轮机冷态起动瞬态工况的汽缸的低周疲劳临界裂纹尺寸a
cc
、核电汽轮机温态起动瞬态工况的汽缸的低周疲劳临界裂纹尺寸a
cw
、核电汽轮机热态起动瞬态工况的汽缸的低周疲劳临界裂纹尺寸a
ch
等。
59.在一种实施方式中,获取汽缸的裂纹扩展尺寸集合,包括获取汽缸的应力计算基础数据,获取汽缸的材料试验基础数据,基于应力计算基础数据和材料实验基础数据,确定裂纹扩展尺寸集合。由此,该方法中可综合考虑到应力计算基础数据和材料实验基础数据,
来确定裂纹扩展尺寸集合。
60.需要说明的是,对应力计算基础数据、材料试验基础数据均不做过多限定。
61.比如,应力计算基础数据包括核电汽轮机带负荷运行稳态工况的汽缸裂纹部位最大应力σ
max0
、核电汽轮机冷态起动瞬态工况的汽缸裂纹部位最大应力σ
maxc
、核电汽轮机温态起动瞬态工况的汽缸裂纹部位最大应力σ
maxw
、核电汽轮机热态起动瞬态工况的汽缸裂纹部位最大应力σ
maxh
等。
62.比如,材料试验基础数据包括汽缸材料的断裂韧性k
ic
,汽缸材料应力腐蚀断裂韧性k
iscc
,年均应力腐蚀裂纹扩展速率试验值裂纹形状参数q等。
63.在一些例子中,基于应力计算基础数据和材料实验基础数据,确定裂纹扩展尺寸集合,包括如下几种可能的实施方式:
64.方式1、基于汽缸的裂纹形状参数、汽缸材料应力腐蚀断裂韧性和核电汽轮机带负荷运行稳态工况的汽缸裂纹部位最大应力,确定汽缸的应力腐蚀裂纹扩展尺寸门槛值。
65.方式2、基于汽缸的裂纹形状参数、汽缸材料的断裂韧性、核电汽轮机冷态起动瞬态工况的汽缸裂纹部位最大应力,确定核电汽轮机冷态起动瞬态工况的汽缸的低周疲劳临界裂纹尺寸。
66.方式3、基于汽缸的裂纹形状参数、汽缸材料的断裂韧性、核电汽轮机温态起动瞬态工况的汽缸裂纹部位最大应力,确定核电汽轮机温态起动瞬态工况的汽缸的低周疲劳临界裂纹尺寸。
67.方式4、基于汽缸的裂纹形状参数、汽缸材料的断裂韧性、核电汽轮机热态起动瞬态工况的汽缸裂纹部位最大应力,确定核电汽轮机热态起动瞬态工况的汽缸的低周疲劳临界裂纹尺寸。
68.比如,继续以上述实施例中的核电汽轮机a的1号低压内缸为例,核电汽轮机a的1号低压内缸的应力计算基础数据、材料试验基础数据分别如表1、2所示。
69.表1低压内缸的应力计算基础数据
70.序号项目数据值1带负荷运行稳态工况的汽缸裂纹部位最大应力σ
max0
/mpa229.1202冷态起动瞬态工况的汽缸裂纹部位最大应力σ
maxc
/mpa252.9703温态起动瞬态工况的汽缸裂纹部位最大应力σ
maxw
/mpa267.0934热态起动瞬态工况的汽缸裂纹部位最大应力σ
maxh
/mpa237.736
71.表2低压内缸的材料试验基础数据
[0072][0073]
核电汽轮机a的1号低压内缸的裂纹扩展尺寸集合的计算过程如下:
[0074][0075][0076][0077][0078]
比如,继续以上述实施例中的核电汽轮机b的2号低压内缸为例,核电汽轮机b的2号低压内缸的应力计算基础数据、材料试验基础数据分别如表1、2所示。
[0079]
核电汽轮机b的2号低压内缸的裂纹扩展尺寸集合的计算过程如下:
[0080][0081][0082][0083][0084]
比如,继续以上述实施例中的核电汽轮机c的1号低压内缸为例,核电汽轮机c的1号低压内缸的应力计算基础数据、材料试验基础数据分别如表1、2所示。
[0085]
核电汽轮机c的1号低压内缸的裂纹扩展尺寸集合的计算过程如下:
[0086][0087]
[0088][0089][0090]
比如,继续以上述实施例中的核电汽轮机d的2号低压内缸为例,核电汽轮机d的2号低压内缸的应力计算基础数据、材料试验基础数据分别如表1、2所示。
[0091]
核电汽轮机d的2号低压内缸的裂纹扩展尺寸集合的计算过程如下:
[0092][0093][0094][0095][0096]
s203,基于相控阵检测裂纹深度和裂纹扩展尺寸集合,获取汽缸的裂纹扩展类别。
[0097]
在一种实施方式中,基于相控阵检测裂纹深度和裂纹扩展尺寸集合,获取汽缸的裂纹扩展类别,包括对相控阵检测裂纹深度和裂纹扩展尺寸集合中的裂纹扩展尺寸进行运算处理,得到运算结果,基于运算结果和裂纹扩展类别之间的对应关系,得到裂纹扩展类别。其中,运算处理可采用相关技术中的至少一种运算处理方式来实现,这里不做过多限定,比如,可包括加、减、乘、除等。
[0098]
在一种实施方式中,基于相控阵检测裂纹深度和裂纹扩展尺寸集合,获取汽缸的裂纹扩展类别,包括基于相控阵检测裂纹深度和裂纹扩展尺寸集合中的裂纹扩展尺寸之间的大小关系,确定裂纹扩展类别。
[0099]
在一些例子中,基于相控阵检测裂纹深度和裂纹扩展尺寸集合,获取汽缸的裂纹扩展类别,包括如下几种可能的实施方式:
[0100]
方式1、若相控阵检测裂纹深度小于应力腐蚀裂纹扩展尺寸门槛值,确定裂纹扩展类别为第一裂纹扩展类别。
[0101]
在一些例子中,若裂纹扩展类别为第一裂纹扩展类别,且第一裂纹扩展类别包括两个阶段,其中,在第一阶段下汽缸的裂纹尺寸从相控阵检测裂纹深度ai扩展至应力腐蚀裂纹扩展尺寸门槛值a
scc
,在第二阶段下汽缸的裂纹尺寸从应力腐蚀裂纹扩展尺寸门槛值a
scc
扩展至低周疲劳临界裂纹尺寸a
cj
。其中,低周疲劳临界裂纹尺寸a
cj
为a
cc
或a
cw
或a
ch
。
[0102]
方式2、若相控阵检测裂纹深度大于应力腐蚀裂纹扩展尺寸门槛值,确定裂纹扩展类别为第二裂纹扩展类别。
[0103]
在一些例子中,若裂纹扩展类别为第二裂纹扩展类别,且第二裂纹扩展类别包括一个阶段,其中,在第一阶段下汽缸的裂纹尺寸从相控阵检测裂纹深度ai扩展至低周疲劳临界裂纹尺寸a
cj
。
[0104]
比如,继续以上述实施例中的核电汽轮机a的1号低压内缸为例,应力腐蚀裂纹尺寸门槛值a
scc
为0.008624m、相控阵无损检测裂纹深度ai为0.002m,由于ai=0.002m《a
scc
=0.008624m,核电汽轮机a的1号低压内缸的裂纹扩展类别为第一裂纹扩展类别。
[0105]
比如,继续以上述实施例中的核电汽轮机b的2号低压内缸为例,应力腐蚀裂纹尺寸门槛值a
scc
为0.008624m、相控阵无损检测裂纹深度ai为0.005m,由于ai=0.005m《a
scc
=0.008624m,核电汽轮机b的2号低压内缸的裂纹扩展类别为第一裂纹扩展类别。
[0106]
比如,继续以上述实施例中的核电汽轮机c的1号低压内缸为例,应力腐蚀裂纹尺寸门槛值a
scc
为0.008624m、相控阵无损检测裂纹深度ai为0.005m,由于ai=0.005m《a
scc
=0.008624m,核电汽轮机c的1号低压内缸的裂纹扩展类别为第一裂纹扩展类别。
[0107]
比如,继续以上述实施例中的核电汽轮机d的2号低压内缸为例,应力腐蚀裂纹尺寸门槛值a
scc
为0.008624m、相控阵无损检测裂纹深度ai为0.010m,由于ai=0.010m》a
scc
=0.008624m,核电汽轮机d的2号低压内缸的裂纹扩展类别为第二裂纹扩展类别。
[0108]
s204,基于汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到汽缸的裂纹扩展日历寿命。
[0109]
s205,基于裂纹扩展日历寿命,对汽缸进行裂纹扩展寿命安全性监控。
[0110]
步骤s204-s205的相关内容,可参见上述实施例,这里不再赘述。
[0111]
综上,根据本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法,获取汽缸的裂纹扩展尺寸集合,基于相控阵检测裂纹深度和裂纹扩展尺寸集合,获取汽缸的裂纹扩展类别。由此,可综合考虑到汽缸的相控阵检测裂纹深度、裂纹扩展尺寸集合,来得到汽缸的裂纹扩展类别。
[0112]
在上述任一实施例的基础上,如图3所示,获取第一裂纹扩展类别下的应力腐蚀裂纹扩展寿命,包括:
[0113]
s301,基于应力腐蚀裂纹扩展尺寸门槛值、汽缸材料年均应力腐蚀裂纹扩展速率试验值、核电汽轮机冷态起动瞬态工况的汽缸的低周疲劳临界裂纹尺寸,得到第一裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命。
[0114]
在一种实施方式中,第一裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命n
fscc1,1
的计算过程如下:
[0115][0116]
s302,基于应力腐蚀裂纹扩展尺寸门槛值、汽缸材料年均应力腐蚀裂纹扩展速率试验值、核电汽轮机温态起动瞬态工况的汽缸的低周疲劳临界裂纹尺寸,得到第一裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命。
[0117]
在一种实施方式中,第一裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命n
fscc1,2
的计算过程如下:
[0118][0119]
s303,基于应力腐蚀裂纹扩展尺寸门槛值、汽缸材料年均应力腐蚀裂纹扩展速率
试验值、核电汽轮机热态起动瞬态工况的汽缸的低周疲劳临界裂纹尺寸,得到第一裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命。
[0120]
在一种实施方式中,第一裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命n
fscc1,3
的计算过程如下:
[0121][0122]
s304,基于第一裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命、第一裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命、第一裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命,确定第一裂纹扩展类别下的应力腐蚀裂纹扩展寿命。
[0123]
在一种实施方式中,基于第一裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命、第一裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命、第一裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命,确定第一裂纹扩展类别下的应力腐蚀裂纹扩展寿命,包括对第一裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命、第一裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命、第一裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命进行加权平均,得到第一裂纹扩展类别下的应力腐蚀裂纹扩展寿命。
[0124]
在一种实施方式中,基于第一裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命、第一裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命、第一裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命,确定第一裂纹扩展类别下的应力腐蚀裂纹扩展寿命,包括将第一裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命、第一裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命、第一裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命中的最小值,确定为第一裂纹扩展类别下的应力腐蚀裂纹扩展寿命。
[0125]
比如,第一裂纹扩展类别下的应力腐蚀裂纹扩展寿命n
fscc01
的计算过程如下:
[0126]nfscc01
=min{n
fscc1,1
,n
fscc1,2
,n
fscc1,3
}
[0127]
比如,继续以上述实施例中的核电汽轮机a的1号低压内缸为例,核电汽轮机a的1号低压内缸的裂纹扩展类别为第一裂纹扩展类别,核电汽轮机a的1号低压内缸的第一裂纹扩展类别下的应力腐蚀裂纹扩展寿命n
fscc01
的计算过程如下:
[0128][0129][0130][0131]nfscc01
=min{n
fscc1,1
,n
fscc1,2
,n
fscc1,3
}=min{22.741,19.832,26.477}=19.832年
[0132]
比如,继续以上述实施例中的核电汽轮机b的2号低压内缸为例,核电汽轮机b的2号低压内缸的裂纹扩展类别为第一裂纹扩展类别,核电汽轮机b的2号低压内缸的第一裂纹
扩展类别下的应力腐蚀裂纹扩展寿命n
fscc01
的计算过程如下:
[0133][0134][0135][0136]nfscc01
=min{n
fscc1,1
,n
fscc1,2
,n
fscc1,3
}=min{22.741,19.832,26.477}=19.832年
[0137]
比如,继续以上述实施例中的核电汽轮机c的1号低压内缸为例,核电汽轮机c的1号低压内缸的裂纹扩展类别为第一裂纹扩展类别,核电汽轮机c的1号低压内缸的第一裂纹扩展类别下的应力腐蚀裂纹扩展寿命n
fscc01
的计算过程如下:
[0138][0139][0140][0141]nfscc01
=min{n
fscc1,1
,n
fscc1,2
,n
fscc1,3
}=min{22.741,19.832,26.477}=19.832年
[0142]
由此,该方法中可综合考虑到应力腐蚀裂纹扩展尺寸门槛值、汽缸材料年均应力腐蚀裂纹扩展速率试验值、低周疲劳临界裂纹尺寸,得到第一裂纹扩展类别下的第一至第三种应力腐蚀裂纹扩展寿命,进而确定第一裂纹扩展类别下的应力腐蚀裂纹扩展寿命。
[0143]
在上述任一实施例的基础上,如图4所示,获取第二裂纹扩展类别下的应力腐蚀裂纹扩展寿命,包括:
[0144]
s401,基于相控阵检测裂纹深度、汽缸材料年均应力腐蚀裂纹扩展速率试验值、核电汽轮机冷态起动瞬态工况的汽缸的低周疲劳临界裂纹尺寸,得到第二裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命。
[0145]
在一种实施方式中,第二裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命n
fscc2,1
的计算过程如下:
[0146][0147]
s402,基于相控阵检测裂纹深度、汽缸材料年均应力腐蚀裂纹扩展速率试验值、核电汽轮机温态起动瞬态工况的汽缸的低周疲劳临界裂纹尺寸,得到第二裂纹扩展类别下的
第二种应力腐蚀裂纹扩展寿命。
[0148]
在一种实施方式中,第二裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命n
fscc2,2
的计算过程如下:
[0149][0150]
s403,基于相控阵检测裂纹深度、汽缸材料年均应力腐蚀裂纹扩展速率试验值、核电汽轮机热态起动瞬态工况的汽缸的低周疲劳临界裂纹尺寸,得到第二裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命。
[0151]
在一种实施方式中,第二裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命n
fscc2,3
的计算过程如下:
[0152][0153]
s403,基于第二裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命、第二裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命、第二裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命,确定第二裂纹扩展类别下的应力腐蚀裂纹扩展寿命。
[0154]
在一种实施方式中,基于第二裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命、第二裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命、第二裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命,确定第二裂纹扩展类别下的应力腐蚀裂纹扩展寿命,包括对第二裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命、第二裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命、第二裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命进行加权平均,得到第二裂纹扩展类别下的应力腐蚀裂纹扩展寿命。
[0155]
在一种实施方式中,基于第二裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命、第二裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命、第二裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命,确定第二裂纹扩展类别下的应力腐蚀裂纹扩展寿命,包括将第二裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命、第二裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命、第二裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命中的最小值,确定为第二裂纹扩展类别下的应力腐蚀裂纹扩展寿命。
[0156]
比如,第二裂纹扩展类别下的应力腐蚀裂纹扩展寿命n
fscc02
的计算过程如下:
[0157]nfscc02
=min{n
fscc2,1
,n
fscc2,2
,n
fscc2,3
}
[0158]
比如,继续以上述实施例中的核电汽轮机d的2号低压内缸为例,核电汽轮机d的2号低压内缸的裂纹扩展类别为第二裂纹扩展类别,核电汽轮机d的2号低压内缸的第二裂纹扩展类别下的应力腐蚀裂纹扩展寿命n
fscc02
的计算过程如下:
[0159]
[0160][0161][0162]nfscc02
=min{n
fscc2,1
,n
fscc2,2
,n
fscc2,3
}=min{21.583,18.675,25.319}=18.675年
[0163]
由此,该方法中可综合考虑到相控阵检测裂纹深度、汽缸材料年均应力腐蚀裂纹扩展速率试验值、低周疲劳临界裂纹尺寸,得到第二裂纹扩展类别下的第一至第三种应力腐蚀裂纹扩展寿命,进而确定第二裂纹扩展类别下的应力腐蚀裂纹扩展寿命。
[0164]
在上述任一实施例的基础上,如图5所示,获取不同裂纹扩展类别下的低周疲劳裂纹扩展寿命,包括:
[0165]
s501,获取核电汽轮机冷态起动瞬态工况的第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命。
[0166]
在一种实施方式中,获取核电汽轮机冷态起动瞬态工况的第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命,包括基于相控阵检测裂纹深度、应力腐蚀裂纹扩展尺寸门槛值、汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、核电汽轮机冷态起动瞬态工况的汽缸裂纹部位最大应力,得到核电汽轮机冷态起动瞬态工况的第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命。
[0167]
在一些例子中,核电汽轮机冷态起动瞬态工况的第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命n
fc1,1
的计算过程如下:
[0168][0169]
其中,c0、m0均汽缸材料低周疲劳裂纹扩展试验常数。
[0170]
s502,获取核电汽轮机冷态起动瞬态工况的第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命。
[0171]
在一种实施方式中,获取核电汽轮机冷态起动瞬态工况的第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命,包括基于应力腐蚀裂纹扩展尺寸门槛值、核电汽轮机冷态起动瞬态工况的汽缸的低周疲劳临界裂纹尺寸、汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、核电汽轮机冷态起动瞬态工况的汽缸裂纹部位最大应力,得到核电汽轮机冷态起动瞬态工况的第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命。
[0172]
在一些例子中,核电汽轮机冷态起动瞬态工况的第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命n
fc1,2
的计算过程如下:
[0173]
[0174]
s503,获取核电汽轮机冷态起动瞬态工况的第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命。
[0175]
在一种实施方式中,获取核电汽轮机冷态起动瞬态工况的第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命,包括基于相控阵检测裂纹深度、核电汽轮机冷态起动瞬态工况的汽缸的低周疲劳临界裂纹尺寸、汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、核电汽轮机冷态起动瞬态工况的汽缸裂纹部位最大应力,得到核电汽轮机冷态起动瞬态工况的第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命。
[0176]
在一些例子中,核电汽轮机冷态起动瞬态工况的第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命n
fc2,1
的计算过程如下:
[0177][0178]
s504,获取核电汽轮机温态起动瞬态工况的第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命。
[0179]
在一种实施方式中,获取核电汽轮机温态起动瞬态工况的第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命,包括基于相控阵检测裂纹深度、应力腐蚀裂纹扩展尺寸门槛值、汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、核电汽轮机温态起动瞬态工况的汽缸裂纹部位最大应力,得到核电汽轮机温态起动瞬态工况的第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命。
[0180]
在一些例子中,核电汽轮机温态起动瞬态工况的第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命n
fw1,1
的计算过程如下:
[0181][0182]
s505,获取核电汽轮机温态起动瞬态工况的第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命。
[0183]
在一种实施方式中,获取核电汽轮机温态起动瞬态工况的第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命,包括基于应力腐蚀裂纹扩展尺寸门槛值、核电汽轮机温态起动瞬态工况的汽缸的低周疲劳临界裂纹尺寸、汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、核电汽轮机温态起动瞬态工况的汽缸裂纹部位最大应力,得到核电汽轮机温态起动瞬态工况的第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命。
[0184]
在一些例子中,核电汽轮机温态起动瞬态工况的第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命n
fw1,2
的计算过程如下:
[0185]
[0186]
s506,获取核电汽轮机温态起动瞬态工况的第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命。
[0187]
在一种实施方式中,获取核电汽轮机温态起动瞬态工况的第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命,包括基于相控阵检测裂纹深度、核电汽轮机温态起动瞬态工况的汽缸的低周疲劳临界裂纹尺寸、汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、核电汽轮机温态起动瞬态工况的汽缸裂纹部位最大应力,得到核电汽轮机温态起动瞬态工况的第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命。
[0188]
在一些例子中,核电汽轮机温态起动瞬态工况的第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命n
fw2,1
的计算过程如下:
[0189][0190]
s507,获取核电汽轮机热态起动瞬态工况的第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命。
[0191]
在一种实施方式中,获取核电汽轮机热态起动瞬态工况的第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命,包括基于相控阵检测裂纹深度、应力腐蚀裂纹扩展尺寸门槛值、汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、核电汽轮机热态起动瞬态工况的汽缸裂纹部位最大应力,得到核电汽轮机热态起动瞬态工况的第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命。
[0192]
在一些例子中,核电汽轮机热态起动瞬态工况的第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命n
fh1,1
的计算过程如下:
[0193][0194]
s508,获取核电汽轮机热态起动瞬态工况的第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命。
[0195]
在一种实施方式中,获取核电汽轮机热态起动瞬态工况的第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命,包括基于应力腐蚀裂纹扩展尺寸门槛值、核电汽轮机热态起动瞬态工况的汽缸的低周疲劳临界裂纹尺寸、汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、核电汽轮机热态起动瞬态工况的汽缸裂纹部位最大应力,得到核电汽轮机热态起动瞬态工况的第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命。
[0196]
在一些例子中,核电汽轮机热态起动瞬态工况的第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命n
fh1,2
的计算过程如下:
[0197]
[0198]
s509,获取核电汽轮机热态起动瞬态工况的第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命。
[0199]
在一种实施方式中,获取核电汽轮机热态起动瞬态工况的第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命,包括基于相控阵检测裂纹深度、核电汽轮机热态起动瞬态工况的汽缸的低周疲劳临界裂纹尺寸、汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、核电汽轮机热态起动瞬态工况的汽缸裂纹部位最大应力,得到核电汽轮机热态起动瞬态工况的第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命。
[0200]
在一些例子中,核电汽轮机热态起动瞬态工况的第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命n
fh2,1
的计算过程如下:
[0201][0202]
比如,继续以上述实施例中的核电汽轮机a的1号低压内缸为例,核电汽轮机a的1号低压内缸的裂纹扩展类别为第一裂纹扩展类别,核电汽轮机a的1号低压内缸的冷态起动瞬态过程的汽缸裂纹位置寿命计算基础数据、温态起动瞬态过程的汽缸裂纹位置寿命计算基础数据、热态起动瞬态过程的汽缸裂纹位置寿命计算基础数据分别如表3、4、5所示。
[0203]
表3冷态起动瞬态过程的汽缸裂纹位置寿命计算基础数据
[0204]
序号项目数据值1冷态起动瞬态工况的汽缸裂纹部位最大应力σ
maxc
/mpa252.9702汽缸材料低周疲劳裂纹扩展试验常数m03.153汽缸材料低周疲劳裂纹扩展试验常数c04.2
×
10-12
4裂纹形状参数q0.88
[0205]
表4温态起动瞬态过程的汽缸裂纹位置寿命计算基础数据
[0206]
序号项目数据值1温态起动瞬态工况的汽缸裂纹部位最大应力σ
maxw
/mpa267.0932汽缸材料低周疲劳裂纹扩展试验常数m03.153汽缸材料低周疲劳裂纹扩展试验常数c04.2
×
10-12
[0207]
表5热态起动瞬态过程的汽缸裂纹位置寿命计算基础数据
[0208]
序号项目数据值1温态起动瞬态工况的汽缸裂纹部位最大应力σ
maxh
/mpa237.7362汽缸材料低周疲劳裂纹扩展试验常数m03.153汽缸材料低周疲劳裂纹扩展试验常数c04.2
×
10-12
[0209]
核电汽轮机a的1号低压内缸的第一裂纹扩展类别下的低周疲劳裂纹扩展寿命的计算过程如下:
[0210][0211][0212]
[0213][0214][0215][0216]
比如,继续以上述实施例中的核电汽轮机b的2号低压内缸为例,核电汽轮机b的2号低压内缸的裂纹扩展类别为第一裂纹扩展类别,核电汽轮机b的2号低压内缸的冷态起动瞬态过程的汽缸裂纹位置寿命计算基础数据、温态起动瞬态过程的汽缸裂纹位置寿命计算基础数据、热态起动瞬态过程的汽缸裂纹位置寿命计算基础数据分别如表3、4、5所示。
[0217]
核电汽轮机b的2号低压内缸的第一裂纹扩展类别下的低周疲劳裂纹扩展寿命的计算过程如下:
[0218][0219][0220]
[0221][0222][0223][0224]
比如,继续以上述实施例中的核电汽轮机c的1号低压内缸为例,核电汽轮机c的1号低压内缸的裂纹扩展类别为第一裂纹扩展类别,核电汽轮机c的1号低压内缸的冷态起动瞬态过程的汽缸裂纹位置寿命计算基础数据、温态起动瞬态过程的汽缸裂纹位置寿命计算基础数据、热态起动瞬态过程的汽缸裂纹位置寿命计算基础数据分别如表3、4、5所示。
[0225]
核电汽轮机c的1号低压内缸的第一裂纹扩展类别下的低周疲劳裂纹扩展寿命的计算过程如下:
[0226][0227][0228]
[0229][0230][0231][0232]
比如,继续以上述实施例中的核电汽轮机d的2号低压内缸为例,核电汽轮机d的2号低压内缸的裂纹扩展类别为第二裂纹扩展类别,核电汽轮机d的2号低压内缸的冷态起动瞬态过程的汽缸裂纹位置寿命计算基础数据、温态起动瞬态过程的汽缸裂纹位置寿命计算基础数据、热态起动瞬态过程的汽缸裂纹位置寿命计算基础数据分别如表3、4、5所示。
[0233]
核电汽轮机d的2号低压内缸的第二裂纹扩展类别下的低周疲劳裂纹扩展寿命的计算过程如下:
[0234][0235][0236][0237]
由此,该方法中可综合考虑到汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、汽缸裂纹部位最大应力、汽缸的裂纹扩展尺寸集合,来获取不同裂纹扩展类别下的低周疲劳裂纹扩展寿命。
[0238]
图6为根据本公开另一个实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法的流程示意图。
[0239]
如图6所示,本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法,包括:
[0240]
s601,获取核电汽轮机的汽缸的相控阵检测裂纹深度,并获取不同裂纹扩展类别
下的汽缸的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命。
[0241]
s602,基于相控阵检测裂纹深度,获取汽缸的裂纹扩展类别。
[0242]
步骤s601-s602的相关内容,可参见上述实施例,这里不再赘述。
[0243]
s603,基于汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和多阶段的低周疲劳裂纹扩展寿命,得到裂纹扩展日历寿命。
[0244]
在一种实施方式中,基于汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和多阶段的低周疲劳裂纹扩展寿命,得到裂纹扩展日历寿命,包括基于汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和多阶段的低周疲劳裂纹扩展寿命,得到每个阶段的日历寿命,基于每个阶段的日历寿命,得到裂纹扩展日历寿命。
[0245]
在一种实施方式中,基于汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和多阶段的低周疲劳裂纹扩展寿命,得到裂纹扩展日历寿命,包括如下两种可能的实施方式:
[0246]
方式1、若汽缸的裂纹扩展类别为第一裂纹扩展类别,基于第一裂纹扩展类别下的应力腐蚀裂纹扩展寿命和多阶段的低周疲劳裂纹扩展寿命,得到第一裂纹扩展类别下的裂纹扩展日历寿命。
[0247]
在一些例子中,还包括基于核电汽轮机冷态起动瞬态工况的第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命、核电汽轮机温态起动瞬态工况的第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命、核电汽轮机热态起动瞬态工况的第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命、核电汽轮机的年均冷态起动次数、年均温态起动次数和年均热态起动次数,得到第一裂纹扩展类别第一阶段的日历寿命。
[0248]
在一些例子中,还包括基于第一裂纹扩展类别下的应力腐蚀裂纹扩展寿命、核电汽轮机冷态起动瞬态工况的第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命、核电汽轮机温态起动瞬态工况的第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命、核电汽轮机热态起动瞬态工况的第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命、核电汽轮机的年均冷态起动次数、年均温态起动次数和年均热态起动次数,得到第一裂纹扩展类别第二阶段的日历寿命。
[0249]
在一些例子中,还包括基于第一裂纹扩展类别第一阶段的日历寿命、第一裂纹扩展类别第二阶段的日历寿命,得到第一裂纹扩展类别下的裂纹扩展日历寿命。
[0250]
在一些例子中,第一裂纹扩展类别下的裂纹扩展日历寿命τ
cl1
的计算过程如下:
[0251][0252][0253]
τ
cl1
=τ
cl1,1
+τ
cl1,2
[0254]
其中,τ
cl1,1
为第一裂纹扩展类别第一阶段的日历寿命,τ
cl1,2
为第一裂纹扩展类别
第二阶段的日历寿命,yc为核电汽轮机的年均冷态起动次数,yw为核电汽轮机的年均温态起动次数,yh为核电汽轮机的年均热态起动次数。
[0255]
比如,继续以上述实施例中的核电汽轮机a的1号低压内缸为例,核电汽轮机a的1号低压内缸的裂纹扩展类别为第一裂纹扩展类别,核电汽轮机a的1号低压内缸的日历设计监控基础数据如表6所示。
[0256]
表6低压内缸的日历设计监控基础数据
[0257]
序号项目数据值1年均冷态起动次数yc/次42年均温态起动次数yw/次203年均热态起动次数yh/次754裂纹扩展寿命安全性监控判据值τ0/年60
[0258]
核电汽轮机a的1号低压内缸的第一裂纹扩展类别下的裂纹扩展日历寿命τ
cl1
的计算过程如下:
[0259][0260]
比如,继续以上述实施例中的核电汽轮机b的2号低压内缸为例,核电汽轮机b的2号低压内缸的裂纹扩展类别为第一裂纹扩展类别,核电汽轮机b的2号低压内缸的日历设计监控基础数据如表6所示。
[0261]
核电汽轮机b的2号低压内缸的第一裂纹扩展类别下的裂纹扩展日历寿命τ
cl1
的计算过程如下:
[0262][0263]
比如,继续以上述实施例中的核电汽轮机c的1号低压内缸为例,核电汽轮机c的1
号低压内缸的裂纹扩展类别为第一裂纹扩展类别,核电汽轮机c的1号低压内缸的日历设计监控基础数据如表7所示。
[0264]
表7低压内缸的日历设计监控基础数据
[0265]
序号项目数据值1年均冷态起动次数yc/次42年均温态起动次数yw/次203年均热态起动次数yh/次754核电汽轮机计划大修间隔τm/年10
[0266]
核电汽轮机c的1号低压内缸的第一裂纹扩展类别下的裂纹扩展日历寿命τ
cl1
的计算过程如下:
[0267][0268]
方式2、若汽缸的裂纹扩展类别为第二裂纹扩展类别,基于第二裂纹扩展类别下的应力腐蚀裂纹扩展寿命和多阶段的低周疲劳裂纹扩展寿命,得到第二裂纹扩展类别下的裂纹扩展日历寿命。
[0269]
在一些例子中,还包括基于第二裂纹扩展类别下的应力腐蚀裂纹扩展寿命、核电汽轮机冷态起动瞬态工况的第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命、核电汽轮机温态起动瞬态工况的第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命、核电汽轮机热态起动瞬态工况的第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命、核电汽轮机的年均冷态起动次数、年均温态起动次数和年均热态起动次数,得到第二裂纹扩展类别第一阶段的日历寿命。
[0270]
在一些例子中,还包括基于第二裂纹扩展类别第一阶段的日历寿命,得到裂纹扩展日历寿命。
[0271]
在一些例子中,第二裂纹扩展类别下的裂纹扩展日历寿命τ
cl2
的计算过程如下:
[0272][0273]
其中,τ
cl2,1
为第二裂纹扩展类别第一阶段的日历寿命。
[0274]
比如,继续以上述实施例中的核电汽轮机d的2号低压内缸为例,核电汽轮机d的2号低压内缸的裂纹扩展类别为第二裂纹扩展类别,核电汽轮机d的2号低压内缸的日历设计
监控基础数据如表7所示。
[0275]
核电汽轮机d的2号低压内缸的第二裂纹扩展类别下的裂纹扩展日历寿命τ
cl2
的计算过程如下:
[0276][0277]
s604,基于裂纹扩展日历寿命,对汽缸进行裂纹扩展寿命安全性监控。
[0278]
步骤s604的相关内容,可参见上述实施例,这里不再赘述。
[0279]
综上,根据本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法,可综合考虑到核电汽轮机的年均冷态起动次数、年均温态起动次数和年均热态起动次数、汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和多阶段的低周疲劳裂纹扩展寿命,来得到汽缸的裂纹扩展日历寿命。
[0280]
图7为根据本公开另一个实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法的流程示意图。
[0281]
如图7所示,本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法,包括:
[0282]
s701,获取核电汽轮机的汽缸的相控阵检测裂纹深度,并获取不同裂纹扩展类别下的汽缸的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命。
[0283]
s702,基于相控阵检测裂纹深度,获取汽缸的裂纹扩展类别,并基于汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到汽缸的裂纹扩展日历寿命。
[0284]
步骤s701-s702的相关内容,可参见上述实施例,这里不再赘述。
[0285]
s703,若核电汽轮机处于制造阶段,基于裂纹扩展日历寿命和汽缸的裂纹扩展寿命安全性监控判据值,得到安全系数。
[0286]
s704,判断安全系数是否满足第一监控合格条件。
[0287]
在一种实施方式中,基于裂纹扩展日历寿命和汽缸的裂纹扩展寿命安全性监控判据值,得到安全系数,包括将裂纹扩展日历寿命和裂纹扩展寿命安全性监控判据值的比值或者差值,确定为安全系数。
[0288]
在一种实施方式中,安全系数与裂纹扩展日历寿命正相关,且与裂纹扩展寿命安全性监控判据值负相关。
[0289]
需要说明的是,对第一监控合格条件不做过多限定,比如,可将安全系数大于第一设定阈值,确定为第一监控合格条件。对第一设定阈值不做过多限定,比如,可为1。
[0290]
比如,继续以上述实施例中的核电汽轮机a的1号低压内缸为例,核电汽轮机a的1号低压内缸的裂纹扩展类别为第一裂纹扩展类别,核电汽轮机a的1号低压内缸的裂纹扩展寿命安全性监控判据值如表6所示,且核电汽轮机a的1号低压内缸的第一裂纹扩展类别下的裂纹扩展日历寿命τ
cl1
为138.69年,τ0=60年,则安全系数sf的计算过程如下:
[0291]
[0292]
可知核电汽轮机a的1号低压内缸的安全系数sf=2.31》1,判断安全系数sf满足第一监控合格条件。
[0293]
比如,继续以上述实施例中的核电汽轮机b的2号低压内缸为例,核电汽轮机b的2号低压内缸的裂纹扩展类别为第一裂纹扩展类别,核电汽轮机b的2号低压内缸的裂纹扩展寿命安全性监控判据值如表6所示,且核电汽轮机b的2号低压内缸的第一裂纹扩展类别下的裂纹扩展日历寿命τ
cl1
为47.83年,τ0=60年,则安全系数sf的计算过程如下:
[0294][0295]
可知核电汽轮机b的2号低压内缸的安全系数sf=0.79《1,判断安全系数sf未满足第一监控合格条件。
[0296]
s705,若安全系数未满足第一监控合格条件,获取汽缸在制造阶段的异常数据。
[0297]
s706,对汽缸在制造阶段的异常数据进行优化改进,并返回执行获取安全系数的流程,直至获取到的安全系数满足第一监控合格条件。
[0298]
需要说明的是,对汽缸在制造阶段的异常数据不做过多限定,比如,可包括汽缸的制造工艺参数、汽缸在制造阶段的应力计算基础数据、核电汽轮机在制造阶段的材料试验基础数据等。
[0299]
在一种实施方式中,对汽缸在制造阶段的异常数据进行优化改进,包括车削或打磨核电汽轮机汽缸裂纹;在不影响核电汽轮机汽缸结构强度的前提下,车削增大核电汽轮机汽缸所在部位圆角半径;局部补焊;采用局部热处理工艺,消除焊接残余应力;补焊部位精加工并抛光;提高加工精度,消除机加工应力集中;再次进行相控阵无损监测,确定汽缸裂纹深度;汽缸喷丸,提高疲劳性能等。
[0300]
比如,继续以上述实施例中的核电汽轮机b的2号低压内缸为例,安全系数sf未满足第一监控合格条件,可对核电汽轮机b的2号低压内缸的制造阶段的异常数据进行优化改进,比如,采用车削或打磨核电汽轮机汽缸裂纹、局部补焊、采用局部热处理工艺以消除焊接残余应力、补焊部位精加工并抛光的部分优化改进策略组合,并对优化改进后的核电汽轮机b的2号低压内缸再次进行相控阵无损检测,没有发现裂纹,在相控阵无损检测没有发现裂纹的情况下,给定核电汽轮机b的2号低压内缸与第二级抽汽管道连接部位裂纹深度ai=2mm=0.002m。
[0301]
再次进行应力腐蚀开裂与低周疲劳损伤共同作用下裂纹安全性监控,并重新计算核电汽轮机b的2号低压内缸的裂纹扩展日历寿命,若重新计算的裂纹扩展日历寿命为第一裂纹扩展类别下的裂纹扩展日历寿命τ
cl1
为138.69年,τ0=60年,则安全系数sf的计算过程如下:
[0302][0303]
可知核电汽轮机b的2号低压内缸的安全系数sf=2.31》1,判断安全系数sf满足第一监控合格条件,结束对核电汽轮机b的2号低压内缸的裂纹扩展寿命安全性监控。
[0304]
综上,根据本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法,若核电汽轮机处于制造阶段,基于裂纹扩展日历寿命和汽缸的裂纹扩展寿命安全性监
控判据值,得到安全系数,判断安全系数是否满足第一监控合格条件,若安全系数未满足第一监控合格条件,获取汽缸在制造阶段的异常数据,对汽缸在制造阶段的异常数据进行优化改进,并返回执行获取安全系数的流程,直至获取到的安全系数满足第一监控合格条件,有助于提高汽缸在制造阶段的安全性,适用于核电汽轮机的制造阶段的汽缸的监控。
[0305]
图8为根据本公开另一个实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法的流程示意图。
[0306]
如图8所示,本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法,包括:
[0307]
s801,获取核电汽轮机的汽缸的相控阵检测裂纹深度,并获取不同裂纹扩展类别下的汽缸的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命。
[0308]
s802,基于相控阵检测裂纹深度,获取汽缸的裂纹扩展类别,并基于汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到汽缸的裂纹扩展日历寿命。
[0309]
步骤s801-s802的相关内容,可参见上述实施例,这里不再赘述。
[0310]
s803,若核电汽轮机处于使用阶段,基于裂纹扩展日历寿命和核电汽轮机的计划大修间隔,得到安全倍率。
[0311]
s804,判断安全倍率是否满足第二监控合格条件。
[0312]
在一种实施方式中,基于裂纹扩展日历寿命和核电汽轮机的计划大修间隔,得到安全倍率,包括将裂纹扩展日历寿命和计划大修间隔的比值或者差值,确定为安全倍率。
[0313]
在一种实施方式中,安全倍率与裂纹扩展日历寿命正相关,且与计划大修间隔负相关。
[0314]
需要说明的是,对第二监控合格条件不做过多限定,比如,可将安全倍率大于第二设定阈值,确定为第二监控合格条件。对第二设定阈值不做过多限定,比如,可为2。
[0315]
比如,继续以上述实施例中的核电汽轮机c的1号低压内缸为例,核电汽轮机c的1号低压内缸的裂纹扩展类别为第一裂纹扩展类别,核电汽轮机c的计划大修间隔如表7所示,且核电汽轮机c的1号低压内缸的第一裂纹扩展类别下的裂纹扩展日历寿命τ
cl1
为47.83年,τm=10年,则安全倍率sr的计算过程如下:
[0316][0317]
可知核电汽轮机c的1号低压内缸的安全倍率sr=4.78》2,判断安全倍率sr满足第二监控合格条件。
[0318]
比如,继续以上述实施例中的核电汽轮机d的2号低压内缸为例,核电汽轮机d的2号低压内缸的裂纹扩展类别为第二裂纹扩展类别,核电汽轮机d的计划大修间隔如表7所示,且核电汽轮机d的2号低压内缸的第二裂纹扩展类别下的裂纹扩展日历寿命τ
cl2
为13.65年,τm=10年,则安全倍率sr的计算过程如下:
[0319][0320]
可知核电汽轮机d的2号低压内缸的安全倍率sr=1.37《2,判断安全倍率sr未满足
第二监控合格条件。
[0321]
s805,若安全倍率未满足第二监控合格条件,获取汽缸在使用阶段的异常数据。
[0322]
s806,对汽缸在使用阶段的异常数据进行优化改进,并返回执行获取安全倍率的流程,直至获取到的安全倍率满足第二监控合格条件。
[0323]
需要说明的是,对汽缸在使用阶段的异常数据不做过多限定,比如,可包括汽缸的使用工艺参数、汽缸在使用阶段的应力计算基础数据、核电汽轮机在使用阶段的材料试验基础数据等。
[0324]
在一种实施方式中,对汽缸在使用阶段的异常数据进行优化改进,包括车削或打磨核电汽轮机汽缸裂纹;在不影响核电汽轮机汽缸结构强度的前提下,车削增大核电汽轮机汽缸所在部位圆角半径;局部补焊;采用局部热处理工艺,消除焊接残余应力;补焊部位精加工并抛光;提高加工精度,消除机加工应力集中;再次进行相控阵无损监测,确定汽缸裂纹深度;汽缸喷丸,提高疲劳性能;优化核电汽轮机冷态起动参数变化曲线,降低冷态起动瞬态工况汽缸热应力;优化核电汽轮机温态起动参数变化曲线,降低温态起动瞬态工况汽缸热应力;优化核电汽轮机热态起动参数变化曲线,降低热态起动瞬态工况汽缸热应力;加强化水技术监督,确保凝结水的水质符合要求;凝汽器管束泄露后及时堵管,防止循环水大量漏入凝结水等。
[0325]
比如,继续以上述实施例中的核电汽轮机d的2号低压内缸为例,安全倍率sr未满足第二监控合格条件,可对核电汽轮机d的2号低压内缸的使用阶段的异常数据进行优化改进,比如,采用车削或打磨核电汽轮机汽缸裂纹、局部补焊、采用局部热处理工艺并消除焊接残余应力、补焊部位精加工并抛光、提高加工精度,消除机加工应力集中部分优化改进策略组合,并对优化改进后的核电汽轮机d的2号低压内缸再次进行相控阵无损检测,没有发现裂纹,在相控阵无损检测没有发现裂纹的情况下,给定核电汽轮机d的2号低压内缸与第二级抽汽管道连接部位裂纹深度ai=2mm=0.002m。
[0326]
再次进行应力腐蚀开裂与低周疲劳损伤共同作用下裂纹安全性监控,并重新计算核电汽轮机d的2号低压内缸的裂纹扩展日历寿命,若重新计算的裂纹扩展日历寿命为第一裂纹扩展类别下的裂纹扩展日历寿命τ
cl1
为138.69年,τm=10年,则安全倍率sr的计算过程如下:
[0327][0328]
可知核电汽轮机d的2号低压内缸的安全倍率sr=13.87》2,判断安全倍率sr满足第二监控合格条件,结束对核电汽轮机d的2号低压内缸的裂纹扩展寿命安全性监控。
[0329]
综上,根据本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法,若核电汽轮机处于使用阶段,基于裂纹扩展日历寿命和核电汽轮机的计划大修间隔,得到安全倍率,判断安全倍率是否满足第二监控合格条件,若安全倍率未满足第二监控合格条件,获取汽缸在使用阶段的异常数据,对汽缸在使用阶段的异常数据进行优化改进,并返回执行获取安全倍率的流程,直至获取到的安全倍率满足第二监控合格条件,有助于提高汽缸在使用阶段的安全性,适用于核电汽轮机的使用阶段的汽缸的监控。
[0330]
为了实现上述实施例,本公开还提出一种核电汽轮机的汽缸应力腐蚀与低周疲劳
安全性监控装置。
[0331]
图9为根据本公开一个实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控装置的结构示意图。
[0332]
如图9所示,本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控装置100,包括:第一获取模块110、第二获取模块120和监控模块130。
[0333]
第一获取模块110,用于获取核电汽轮机的汽缸的相控阵检测裂纹深度,并获取不同裂纹扩展类别下的所述汽缸的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命;
[0334]
第二获取模块120,用于基于所述相控阵检测裂纹深度,获取所述汽缸的裂纹扩展类别,并基于所述汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到所述汽缸的裂纹扩展日历寿命;
[0335]
监控模块130,用于基于所述裂纹扩展日历寿命,对所述汽缸进行裂纹扩展寿命安全性监控。
[0336]
在本公开的一个实施例中,所述第一获取模块110,还用于:通过相控阵超声探伤仪和相控阵探头,对所述汽缸进行相控阵检测,得到所述相控阵检测裂纹深度;若对所述汽缸进行相控阵检测没有发现裂纹,给定所述相控阵检测裂纹深度为设定值。
[0337]
在本公开的一个实施例中,所述第二获取模块120,还用于:获取所述汽缸的裂纹扩展尺寸集合;基于所述相控阵检测裂纹深度和所述裂纹扩展尺寸集合,获取所述汽缸的裂纹扩展类别。
[0338]
在本公开的一个实施例中,所述第二获取模块120,还用于:获取所述汽缸的应力计算基础数据;获取所述汽缸的材料试验基础数据;基于所述应力计算基础数据和所述材料实验基础数据,确定所述裂纹扩展尺寸集合。
[0339]
在本公开的一个实施例中,所述第二获取模块120,还用于:
[0340]
基于所述汽缸的裂纹形状参数、汽缸材料应力腐蚀断裂韧性和所述核电汽轮机带负荷运行稳态工况的汽缸裂纹部位最大应力,确定所述汽缸的应力腐蚀裂纹扩展尺寸门槛值;
[0341]
基于所述汽缸的裂纹形状参数、汽缸材料的断裂韧性、所述核电汽轮机冷态起动瞬态工况的汽缸裂纹部位最大应力,确定所述核电汽轮机冷态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸;
[0342]
基于所述汽缸的裂纹形状参数、汽缸材料的断裂韧性、所述核电汽轮机温态起动瞬态工况的汽缸裂纹部位最大应力,确定所述核电汽轮机温态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸;
[0343]
基于所述汽缸的裂纹形状参数、汽缸材料的断裂韧性、所述核电汽轮机热态起动瞬态工况的汽缸裂纹部位最大应力,确定所述核电汽轮机热态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸。
[0344]
在本公开的一个实施例中,所述第二获取模块120,还用于:若所述相控阵检测裂纹深度小于所述应力腐蚀裂纹扩展尺寸门槛值,确定所述裂纹扩展类别为第一裂纹扩展类别;或者,若所述相控阵检测裂纹深度大于所述应力腐蚀裂纹扩展尺寸门槛值,确定所述裂纹扩展类别为第二裂纹扩展类别。
[0345]
在本公开的一个实施例中,若所述裂纹扩展类别为第一裂纹扩展类别,且所述第
一裂纹扩展类别包括两个阶段,其中,在第一阶段下所述汽缸的裂纹尺寸从所述相控阵检测裂纹深度扩展至所述应力腐蚀裂纹扩展尺寸门槛值,在第二阶段下所述汽缸的裂纹尺寸从所述应力腐蚀裂纹扩展尺寸门槛值扩展至所述低周疲劳临界裂纹尺寸。
[0346]
在本公开的一个实施例中,若所述裂纹扩展类别为第二裂纹扩展类别,且所述第二裂纹扩展类别包括一个阶段,其中,在第一阶段下所述汽缸的裂纹尺寸从所述相控阵检测裂纹深度扩展至所述低周疲劳临界裂纹尺寸。
[0347]
在本公开的一个实施例中,所述第一获取模块110,还用于:
[0348]
基于所述应力腐蚀裂纹扩展尺寸门槛值、汽缸材料年均应力腐蚀裂纹扩展速率试验值、所述核电汽轮机冷态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸,得到所述第一裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命;
[0349]
基于所述应力腐蚀裂纹扩展尺寸门槛值、汽缸材料年均应力腐蚀裂纹扩展速率试验值、所述核电汽轮机温态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸,得到所述第一裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命;
[0350]
基于所述应力腐蚀裂纹扩展尺寸门槛值、汽缸材料年均应力腐蚀裂纹扩展速率试验值、所述核电汽轮机热态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸,得到所述第一裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命;
[0351]
基于所述第一裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命、所述第一裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命、所述第一裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命,确定所述第一裂纹扩展类别下的应力腐蚀裂纹扩展寿命。
[0352]
在本公开的一个实施例中,所述第一获取模块110,还用于:
[0353]
将所述第一裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命、所述第一裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命、所述第一裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命中的最小值,确定为所述第一裂纹扩展类别下的应力腐蚀裂纹扩展寿命。
[0354]
在本公开的一个实施例中,所述第一获取模块110,还用于:
[0355]
基于所述相控阵检测裂纹深度、汽缸材料年均应力腐蚀裂纹扩展速率试验值、所述核电汽轮机冷态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸,得到所述第二裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命;
[0356]
基于所述相控阵检测裂纹深度、汽缸材料年均应力腐蚀裂纹扩展速率试验值、所述核电汽轮机温态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸,得到所述第二裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命;
[0357]
基于所述相控阵检测裂纹深度、汽缸材料年均应力腐蚀裂纹扩展速率试验值、所述核电汽轮机热态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸,得到所述第二裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命;
[0358]
基于所述第二裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命、所述第二裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命、所述第二裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命,确定所述第二裂纹扩展类别下的应力腐蚀裂纹扩展寿命。
[0359]
在本公开的一个实施例中,所述第一获取模块110,还用于:将所述第二裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命、所述第二裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命、所述第二裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命中的最小值,确定为
所述第二裂纹扩展类别下的应力腐蚀裂纹扩展寿命。
[0360]
在本公开的一个实施例中,所述第一获取模块110,还用于:
[0361]
基于所述相控阵检测裂纹深度、所述应力腐蚀裂纹扩展尺寸门槛值、所述汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、所述核电汽轮机冷态起动瞬态工况的汽缸裂纹部位最大应力,得到所述核电汽轮机冷态起动瞬态工况的所述第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命;
[0362]
基于所述应力腐蚀裂纹扩展尺寸门槛值、所述核电汽轮机冷态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸、所述汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、所述核电汽轮机冷态起动瞬态工况的汽缸裂纹部位最大应力,得到所述核电汽轮机冷态起动瞬态工况的所述第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命。
[0363]
在本公开的一个实施例中,所述第一获取模块110,还用于:
[0364]
基于所述相控阵检测裂纹深度、所述核电汽轮机冷态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸、所述汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、所述核电汽轮机冷态起动瞬态工况的汽缸裂纹部位最大应力,得到所述核电汽轮机冷态起动瞬态工况的所述第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命。
[0365]
在本公开的一个实施例中,所述第一获取模块110,还用于:
[0366]
基于所述相控阵检测裂纹深度、所述应力腐蚀裂纹扩展尺寸门槛值、所述汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、所述核电汽轮机温态起动瞬态工况的汽缸裂纹部位最大应力,得到所述核电汽轮机温态起动瞬态工况的所述第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命;
[0367]
基于所述应力腐蚀裂纹扩展尺寸门槛值、所述核电汽轮机温态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸、所述汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、所述核电汽轮机温态起动瞬态工况的汽缸裂纹部位最大应力,得到所述核电汽轮机温态起动瞬态工况的所述第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命。
[0368]
在本公开的一个实施例中,所述第一获取模块110,还用于:
[0369]
基于所述相控阵检测裂纹深度、所述核电汽轮机温态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸、所述汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、所述核电汽轮机温态起动瞬态工况的汽缸裂纹部位最大应力,得到所述核电汽轮机温态起动瞬态工况的所述第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命。
[0370]
在本公开的一个实施例中,所述第一获取模块110,还用于:
[0371]
基于所述相控阵检测裂纹深度、所述应力腐蚀裂纹扩展尺寸门槛值、所述汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、所述核电汽轮机热态起动瞬态工况的汽缸裂纹部位最大应力,得到所述核电汽轮机热态起动瞬态工况的所述第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命;
[0372]
基于所述应力腐蚀裂纹扩展尺寸门槛值、所述核电汽轮机热态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸、所述汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、所述核电汽轮机热态起动瞬态工况的汽缸裂纹部位最大应力,得到所述核电汽轮机热态起动瞬态工况的所述第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命。
[0373]
在本公开的一个实施例中,所述第一获取模块110,还用于:
[0374]
基于所述相控阵检测裂纹深度、所述核电汽轮机热态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸、所述汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、所述核电汽轮机热态起动瞬态工况的汽缸裂纹部位最大应力,得到所述核电汽轮机热态起动瞬态工况的所述第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命。
[0375]
在本公开的一个实施例中,所述第二获取模块120,还用于:基于所述汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和多阶段的低周疲劳裂纹扩展寿命,得到所述裂纹扩展日历寿命。
[0376]
在本公开的一个实施例中,若所述汽缸的裂纹扩展类别为所述第一裂纹扩展类别,所述第二获取模块120,还用于:
[0377]
基于所述核电汽轮机冷态起动瞬态工况的所述第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命、所述核电汽轮机温态起动瞬态工况的所述第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命、所述核电汽轮机热态起动瞬态工况的所述第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命、所述核电汽轮机的年均冷态起动次数、年均温态起动次数和年均热态起动次数,得到所述第一裂纹扩展类别第一阶段的日历寿命;
[0378]
基于所述第一裂纹扩展类别下的应力腐蚀裂纹扩展寿命、所述核电汽轮机冷态起动瞬态工况的所述第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命、所述核电汽轮机温态起动瞬态工况的所述第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命、所述核电汽轮机热态起动瞬态工况的所述第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命、所述核电汽轮机的年均冷态起动次数、年均温态起动次数和年均热态起动次数,得到所述第一裂纹扩展类别第二阶段的日历寿命;
[0379]
基于所述第一裂纹扩展类别第一阶段的日历寿命、所述第一裂纹扩展类别第二阶段的日历寿命,得到所述裂纹扩展日历寿命。
[0380]
在本公开的一个实施例中,若所述汽缸的裂纹扩展类别为所述第二裂纹扩展类别,所述第二获取模块120,还用于:
[0381]
基于所述第二裂纹扩展类别下的应力腐蚀裂纹扩展寿命、所述核电汽轮机冷态起动瞬态工况的所述第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命、所述核电汽轮机温态起动瞬态工况的所述第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命、所述核电汽轮机热态起动瞬态工况的所述第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命、所述核电汽轮机的年均冷态起动次数、年均温态起动次数和年均热态起动次数,得到所述第二裂纹扩展类别第一阶段的日历寿命;
[0382]
基于所述第二裂纹扩展类别第一阶段的日历寿命,得到所述裂纹扩展日历寿命。
[0383]
在本公开的一个实施例中,所述监控模块130,还用于:若所述核电汽轮机处于制造阶段,基于所述裂纹扩展日历寿命和所述汽缸的裂纹扩展寿命安全性监控判据值,得到安全系数;判断所述安全系数是否满足第一监控合格条件,以对所述汽缸进行裂纹扩展寿命安全性监控。
[0384]
在本公开的一个实施例中,所述监控模块130,还用于:若所述安全系数未满足所述第一监控合格条件,获取所述汽缸在制造阶段的异常数据;对所述汽缸在制造阶段的异常数据进行优化改进,并返回执行获取所述安全系数的流程,直至获取到的所述安全系数满足所述第一监控合格条件。
[0385]
在本公开的一个实施例中,所述监控模块130,还用于:若所述核电汽轮机处于使用阶段,基于所述裂纹扩展日历寿命和所述核电汽轮机的计划大修间隔,得到安全倍率;判断所述安全倍率是否满足第二监控合格条件,以对所述汽缸进行裂纹扩展寿命安全性监控。
[0386]
在本公开的一个实施例中,所述监控模块130,还用于:若所述安全倍率未满足所述第二监控合格条件,获取所述汽缸在使用阶段的异常数据;对所述汽缸在使用阶段的异常数据进行优化改进,并返回执行获取所述安全倍率的流程,直至获取到的所述安全倍率满足所述第二监控合格条件。
[0387]
需要说明的是,本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控装置中未披露的细节,请参照本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法中所披露的细节,这里不再赘述。
[0388]
综上,本公开实施例的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控装置,获取核电汽轮机的汽缸的相控阵检测裂纹深度,并获取不同裂纹扩展类别下的汽缸的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,基于相控阵检测裂纹深度,获取汽缸的裂纹扩展类别,并基于汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到汽缸的裂纹扩展日历寿命,基于裂纹扩展日历寿命,对汽缸进行裂纹扩展寿命安全性监控。由此,可综合考虑到应力腐蚀、低周疲劳对汽缸的寿命的影响,以对汽缸进行裂纹扩展寿命安全性监控,以保证核电汽轮机汽缸的长寿命安全运行。
[0389]
为了实现上述实施例,如图10所示,本公开实施例提出了一种电子设备200,包括:存储器210、处理器220及存储在存储器210上并可在处理器220上运行的计算机程序,所述处理器220执行所述程序时,实现上述的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法。
[0390]
在本公开的一个实施例中,电子设备200,还包括:无线通信组件,所述无线通信组件与核电汽轮机连接,所述电子设备200与所述核电汽轮机之间通过所述无线通信组件进行数据传输。
[0391]
在本公开的一个实施例中,所述存储器210,用于存储所述核电汽轮机的汽缸的裂纹扩展日历寿命;
[0392]
所述处理器220,用于获取裂纹扩展寿命安全性监控指令,基于裂纹扩展寿命安全性监控指令,从所述存储器210中获取待监控的核电汽轮机的目标汽缸的裂纹扩展日历寿命,并基于所述目标汽缸的裂纹扩展日历寿命,对所述目标汽缸进行裂纹扩展寿命安全性监控。
[0393]
在本公开的一个实施例中,电子设备200,还包括:远程客户端,所述远程客户端与所述处理器220连接;所述远程客户端,用于向所述处理器220发送所述裂纹扩展寿命安全性监控指令,以及接收所述处理器220反馈的监控结果。
[0394]
在本公开的一个实施例中,所述远程客户端,还用于获取操控所述远程客户端的用户的操控信息,并基于所述操控信息生成所述裂纹扩展寿命安全性监控指令。
[0395]
在本公开的一个实施例中,所述处理器220还用于将所述远程客户端关联的核电汽轮机的汽缸确定为所述目标汽缸。
[0396]
本公开实施例的电子设备,通过处理器执行存储在存储器上的计算机程序,获取
核电汽轮机的汽缸的相控阵检测裂纹深度,并获取不同裂纹扩展类别下的汽缸的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,基于相控阵检测裂纹深度,获取汽缸的裂纹扩展类别,并基于汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到汽缸的裂纹扩展日历寿命,基于裂纹扩展日历寿命,对汽缸进行裂纹扩展寿命安全性监控。由此,可综合考虑到应力腐蚀、低周疲劳对汽缸的寿命的影响,以对汽缸进行裂纹扩展寿命安全性监控,以保证核电汽轮机汽缸的长寿命安全运行。
[0397]
为了实现上述实施例,本公开实施例提出了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时,实现上述的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法。
[0398]
本公开实施例的计算机可读存储介质,通过存储计算机程序并被处理器执行,获取核电汽轮机的汽缸的相控阵检测裂纹深度,并获取不同裂纹扩展类别下的汽缸的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,基于相控阵检测裂纹深度,获取汽缸的裂纹扩展类别,并基于汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到汽缸的裂纹扩展日历寿命,基于裂纹扩展日历寿命,对汽缸进行裂纹扩展寿命安全性监控。由此,可综合考虑到应力腐蚀、低周疲劳对汽缸的寿命的影响,以对汽缸进行裂纹扩展寿命安全性监控,以保证核电汽轮机汽缸的长寿命安全运行。
[0399]
为了实现上述实施例,本公开实施例提出了一种适用于核电汽轮机的监控平台,包括上述的图9所示的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控装置;或者上述的电子设备;或者上述的计算机可读存储介质。
[0400]
本公开实施例的适用于核电汽轮机的监控平台,获取核电汽轮机的汽缸的相控阵检测裂纹深度,并获取不同裂纹扩展类别下的汽缸的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,基于相控阵检测裂纹深度,获取汽缸的裂纹扩展类别,并基于汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到汽缸的裂纹扩展日历寿命,基于裂纹扩展日历寿命,对汽缸进行裂纹扩展寿命安全性监控。由此,可综合考虑到应力腐蚀、低周疲劳对汽缸的寿命的影响,以对汽缸进行裂纹扩展寿命安全性监控,以保证核电汽轮机汽缸的长寿命安全运行。
[0401]
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
[0402]
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
[0403]
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情
况理解上述术语在本公开中的具体含义。
[0404]
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
[0405]
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
[0406]
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。
技术特征:
1.一种核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法,其特征在于,包括:获取核电汽轮机的汽缸的相控阵检测裂纹深度,并获取不同裂纹扩展类别下的所述汽缸的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命;基于所述相控阵检测裂纹深度,获取所述汽缸的裂纹扩展类别,并基于所述汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到所述汽缸的裂纹扩展日历寿命;基于所述裂纹扩展日历寿命,对所述汽缸进行裂纹扩展寿命安全性监控。2.根据权利要求1所述的方法,其特征在于,所述获取核电汽轮机的汽缸的相控阵检测裂纹深度,包括:通过相控阵超声探伤仪和相控阵探头,对所述汽缸进行相控阵检测,得到所述相控阵检测裂纹深度;若对所述汽缸进行相控阵检测没有发现裂纹,给定所述相控阵检测裂纹深度为设定值。3.根据权利要求1所述的方法,其特征在于,所述基于所述相控阵检测裂纹深度,获取所述汽缸的裂纹扩展类别,包括:获取所述汽缸的裂纹扩展尺寸集合;基于所述相控阵检测裂纹深度和所述裂纹扩展尺寸集合,获取所述汽缸的裂纹扩展类别。4.根据权利要求3所述的方法,其特征在于,所述获取所述汽缸的裂纹扩展尺寸集合,包括:获取所述汽缸的应力计算基础数据;获取所述汽缸的材料试验基础数据;基于所述应力计算基础数据和所述材料实验基础数据,确定所述裂纹扩展尺寸集合。5.根据权利要求4所述的方法,其特征在于,所述基于所述应力计算基础数据和所述材料实验基础数据,确定所述裂纹扩展尺寸集合,包括:基于所述汽缸的裂纹形状参数、汽缸材料应力腐蚀断裂韧性和所述核电汽轮机带负荷运行稳态工况的汽缸裂纹部位最大应力,确定所述汽缸的应力腐蚀裂纹扩展尺寸门槛值;基于所述汽缸的裂纹形状参数、汽缸材料的断裂韧性、所述核电汽轮机冷态起动瞬态工况的汽缸裂纹部位最大应力,确定所述核电汽轮机冷态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸;基于所述汽缸的裂纹形状参数、汽缸材料的断裂韧性、所述核电汽轮机温态起动瞬态工况的汽缸裂纹部位最大应力,确定所述核电汽轮机温态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸;基于所述汽缸的裂纹形状参数、汽缸材料的断裂韧性、所述核电汽轮机热态起动瞬态工况的汽缸裂纹部位最大应力,确定所述核电汽轮机热态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸。6.根据权利要求5所述的方法,其特征在于,所述基于所述相控阵检测裂纹深度和所述裂纹扩展尺寸集合,获取所述汽缸的裂纹扩展类别,包括:若所述相控阵检测裂纹深度小于所述应力腐蚀裂纹扩展尺寸门槛值,确定所述裂纹扩
展类别为第一裂纹扩展类别;或者,若所述相控阵检测裂纹深度大于所述应力腐蚀裂纹扩展尺寸门槛值,确定所述裂纹扩展类别为第二裂纹扩展类别。7.根据权利要求6所述的方法,其特征在于,获取不同裂纹扩展类别下的应力腐蚀裂纹扩展寿命,包括:基于所述应力腐蚀裂纹扩展尺寸门槛值、汽缸材料年均应力腐蚀裂纹扩展速率试验值、所述核电汽轮机冷态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸,得到所述第一裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命;基于所述应力腐蚀裂纹扩展尺寸门槛值、汽缸材料年均应力腐蚀裂纹扩展速率试验值、所述核电汽轮机温态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸,得到所述第一裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命;基于所述应力腐蚀裂纹扩展尺寸门槛值、汽缸材料年均应力腐蚀裂纹扩展速率试验值、所述核电汽轮机热态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸,得到所述第一裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命;基于所述第一裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命、所述第一裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命、所述第一裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命,确定所述第一裂纹扩展类别下的应力腐蚀裂纹扩展寿命。8.根据权利要求6所述的方法,其特征在于,获取不同裂纹扩展类别下的应力腐蚀裂纹扩展寿命,包括:基于所述相控阵检测裂纹深度、汽缸材料年均应力腐蚀裂纹扩展速率试验值、所述核电汽轮机冷态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸,得到所述第二裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命;基于所述相控阵检测裂纹深度、汽缸材料年均应力腐蚀裂纹扩展速率试验值、所述核电汽轮机温态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸,得到所述第二裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命;基于所述相控阵检测裂纹深度、汽缸材料年均应力腐蚀裂纹扩展速率试验值、所述核电汽轮机热态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸,得到所述第二裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命;基于所述第二裂纹扩展类别下的第一种应力腐蚀裂纹扩展寿命、所述第二裂纹扩展类别下的第二种应力腐蚀裂纹扩展寿命、所述第二裂纹扩展类别下的第三种应力腐蚀裂纹扩展寿命,确定所述第二裂纹扩展类别下的应力腐蚀裂纹扩展寿命。9.根据权利要求6所述的方法,其特征在于,获取不同裂纹扩展类别下的低周疲劳裂纹扩展寿命,包括:基于所述相控阵检测裂纹深度、所述应力腐蚀裂纹扩展尺寸门槛值、所述汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、所述核电汽轮机冷态起动瞬态工况的汽缸裂纹部位最大应力,得到所述核电汽轮机冷态起动瞬态工况的所述第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命;基于所述应力腐蚀裂纹扩展尺寸门槛值、所述核电汽轮机冷态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸、所述汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验
常数、所述核电汽轮机冷态起动瞬态工况的汽缸裂纹部位最大应力,得到所述核电汽轮机冷态起动瞬态工况的所述第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命。10.根据权利要求6所述的方法,其特征在于,获取不同裂纹扩展类别下的低周疲劳裂纹扩展寿命,包括:基于所述相控阵检测裂纹深度、所述核电汽轮机冷态起动瞬态工况的所述汽缸的低周疲劳临界裂纹尺寸、所述汽缸的裂纹形状参数、汽缸材料低周疲劳裂纹扩展试验常数、所述核电汽轮机冷态起动瞬态工况的汽缸裂纹部位最大应力,得到所述核电汽轮机冷态起动瞬态工况的所述第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命。11.根据权利要求6所述的方法,其特征在于,所述基于所述汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到所述汽缸的裂纹扩展日历寿命,包括:基于所述汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和多阶段的低周疲劳裂纹扩展寿命,得到所述裂纹扩展日历寿命。12.根据权利要求11所述的方法,其特征在于,若所述汽缸的裂纹扩展类别为所述第一裂纹扩展类别,所述基于所述汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和多阶段的低周疲劳裂纹扩展寿命,得到所述裂纹扩展日历寿命,包括:基于所述核电汽轮机冷态起动瞬态工况的所述第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命、所述核电汽轮机温态起动瞬态工况的所述第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命、所述核电汽轮机热态起动瞬态工况的所述第一裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命、所述核电汽轮机的年均冷态起动次数、年均温态起动次数和年均热态起动次数,得到所述第一裂纹扩展类别第一阶段的日历寿命;基于所述第一裂纹扩展类别下的应力腐蚀裂纹扩展寿命、所述核电汽轮机冷态起动瞬态工况的所述第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命、所述核电汽轮机温态起动瞬态工况的所述第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命、所述核电汽轮机热态起动瞬态工况的所述第一裂纹扩展类别第二阶段的低周疲劳裂纹扩展寿命、所述核电汽轮机的年均冷态起动次数、年均温态起动次数和年均热态起动次数,得到所述第一裂纹扩展类别第二阶段的日历寿命;基于所述第一裂纹扩展类别第一阶段的日历寿命、所述第一裂纹扩展类别第二阶段的日历寿命,得到所述裂纹扩展日历寿命。13.根据权利要求11所述的方法,其特征在于,若所述汽缸的裂纹扩展类别为所述第二裂纹扩展类别,所述基于所述汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和多阶段的低周疲劳裂纹扩展寿命,得到所述裂纹扩展日历寿命,包括:基于所述第二裂纹扩展类别下的应力腐蚀裂纹扩展寿命、所述核电汽轮机冷态起动瞬态工况的所述第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命、所述核电汽轮机温态起动瞬态工况的所述第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命、所述核电汽轮机热态起动瞬态工况的所述第二裂纹扩展类别第一阶段的低周疲劳裂纹扩展寿命、所述核电汽轮机的年均冷态起动次数、年均温态起动次数和年均热态起动次数,得到所述第二裂纹扩展类别第一阶段的日历寿命;基于所述第二裂纹扩展类别第一阶段的日历寿命,得到所述裂纹扩展日历寿命。
14.根据权利要求1-13中任一项所述的方法,其特征在于,所述基于所述裂纹扩展日历寿命,对所述汽缸进行裂纹扩展寿命安全性监控,包括:若所述核电汽轮机处于制造阶段,基于所述裂纹扩展日历寿命和所述汽缸的裂纹扩展寿命安全性监控判据值,得到安全系数;判断所述安全系数是否满足第一监控合格条件,以对所述汽缸进行裂纹扩展寿命安全性监控。15.根据权利要求14所述的方法,其特征在于,所述方法还包括:若所述安全系数未满足所述第一监控合格条件,获取所述汽缸在制造阶段的异常数据;对所述汽缸在制造阶段的异常数据进行优化改进,并返回执行获取所述安全系数的流程,直至获取到的所述安全系数满足所述第一监控合格条件。16.根据权利要求1-13中任一项所述的方法,其特征在于,所述基于所述裂纹扩展日历寿命,对所述汽缸进行裂纹扩展寿命安全性监控,包括:若所述核电汽轮机处于使用阶段,基于所述裂纹扩展日历寿命和所述核电汽轮机的计划大修间隔,得到安全倍率;判断所述安全倍率是否满足第二监控合格条件,以对所述汽缸进行裂纹扩展寿命安全性监控。17.根据权利要求16所述的方法,其特征在于,所述方法还包括:若所述安全倍率未满足所述第二监控合格条件,获取所述汽缸在使用阶段的异常数据;对所述汽缸在使用阶段的异常数据进行优化改进,并返回执行获取所述安全倍率的流程,直至获取到的所述安全倍率满足所述第二监控合格条件。18.一种核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控装置,其特征在于,包括:第一获取模块,用于获取核电汽轮机的汽缸的相控阵检测裂纹深度,并获取不同裂纹扩展类别下的所述汽缸的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命;第二获取模块,用于基于所述相控阵检测裂纹深度,获取所述汽缸的裂纹扩展类别,并基于所述汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到所述汽缸的裂纹扩展日历寿命;监控模块,用于基于所述裂纹扩展日历寿命,对所述汽缸进行裂纹扩展寿命安全性监控。19.根据权利要求18所述的装置,其特征在于,所述第一获取模块,还用于:通过相控阵超声探伤仪和相控阵探头,对所述汽缸进行相控阵检测,得到所述相控阵检测裂纹深度;若对所述汽缸进行相控阵检测没有发现裂纹,给定所述相控阵检测裂纹深度为设定值。20.根据权利要求18所述的装置,其特征在于,所述第二获取模块,还用于:获取所述汽缸的裂纹扩展尺寸集合;基于所述相控阵检测裂纹深度和所述裂纹扩展尺寸集合,获取所述汽缸的裂纹扩展类别。
21.根据权利要求20所述的装置,其特征在于,所述第二获取模块,还用于:获取所述汽缸的应力计算基础数据;获取所述汽缸的材料试验基础数据;基于所述应力计算基础数据和所述材料实验基础数据,确定所述裂纹扩展尺寸集合。22.根据权利要求18-21中任一项所述的装置,其特征在于,所述监控模块,还用于:若所述核电汽轮机处于使用阶段,基于所述裂纹扩展日历寿命和所述核电汽轮机的计划大修间隔,得到安全倍率;判断所述安全倍率是否满足第二监控合格条件,以对所述汽缸进行裂纹扩展寿命安全性监控。23.根据权利要求22所述的装置,其特征在于,所述监控模块,还用于:若所述安全倍率未满足所述第二监控合格条件,获取所述汽缸在使用阶段的异常数据;对所述汽缸在使用阶段的异常数据进行优化改进,并返回执行获取所述安全倍率的流程,直至获取到的所述安全倍率满足所述第二监控合格条件。24.一种电子设备,其特征在于,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如权利要求1-17中任一项所述的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法。25.根据权利要求24所述的电子设备,其特征在于,还包括:无线通信组件,所述无线通信组件与核电汽轮机连接,所述电子设备与所述核电汽轮机之间通过所述无线通信组件进行数据传输。26.根据权利要求24所述的电子设备,其特征在于,所述存储器,用于存储所述核电汽轮机的汽缸的裂纹扩展日历寿命;所述处理器,用于获取裂纹扩展寿命安全性监控指令,基于裂纹扩展寿命安全性监控指令,从所述存储器中获取待监控的核电汽轮机的目标汽缸的裂纹扩展日历寿命,并基于所述目标汽缸的裂纹扩展日历寿命,对所述目标汽缸进行裂纹扩展寿命安全性监控。27.根据权利要求26所述的电子设备,其特征在于,还包括:远程客户端,所述远程客户端与所述处理器连接;所述远程客户端,用于向所述处理器发送所述裂纹扩展寿命安全性监控指令,以及接收所述处理器反馈的监控结果。28.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-17中任一项所述的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法。29.一种适用于核电汽轮机的监控平台,其特征在于,包括:如权利要求18-23中任一项所述的核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控装置;或者如权利要求24-27中任一项所述的电子设备;或者如权利要求28所述的计算机可读存储介质。
技术总结
本公开提供了一种核电汽轮机的汽缸应力腐蚀与低周疲劳安全性监控方法。方法包括:获取核电汽轮机的汽缸的相控阵检测裂纹深度,并获取不同裂纹扩展类别下的汽缸的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命;基于相控阵检测裂纹深度,获取汽缸的裂纹扩展类别,并基于汽缸的裂纹扩展类别下的应力腐蚀裂纹扩展寿命和低周疲劳裂纹扩展寿命,得到汽缸的裂纹扩展日历寿命;基于裂纹扩展日历寿命,对汽缸进行裂纹扩展寿命安全性监控。由此,可综合考虑到应力腐蚀、低周疲劳对汽缸的寿命的影响,以对汽缸进行裂纹扩展寿命安全性监控,以保证核电汽轮机汽缸的长寿命安全运行。保证核电汽轮机汽缸的长寿命安全运行。保证核电汽轮机汽缸的长寿命安全运行。
技术研发人员:史进渊 江路毅 谢岳生 范雪飞 李汪繁 徐望人 王宇轩 王得谖
受保护的技术使用者:上海发电设备成套设计研究院有限责任公司
技术研发日:2023.06.15
技术公布日:2023/9/20
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/