涡轮增压器柔性轴承筒组件的制作方法
未命名
07-08
阅读:85
评论:0

1.本文中所公开的主题总体上涉及用于内燃发动机的涡轮增压器。
背景技术:
2.涡轮增压器可以包括旋转组,该旋转组包括通过轴彼此连接的涡轮机叶轮和压缩机叶轮。例如,涡轮机叶轮可以焊接或以其他方式连接到轴以形成轴和叶轮组件(swa),并且压缩机叶轮可以装配到轴的自由端。作为示例,附接到一个或多个装有叶片的叶轮的轴可由设置在轴承壳体中的一个或多个轴承支撑,这些可形成中心壳体旋转组件(chra)。在涡轮增压器的操作期间,取决于诸如各种部件的尺寸之类的因素,可预期swa以超过200,000 rpm的速度旋转。
附图说明
3.当结合附图中所示的示例时,通过参考以下详细描述,可具有对本文中所描述的各种方法、装置、组件、系统、布置结构等以及其等同物的更完整的理解,在附图中:
4.图1是涡轮增压器和内燃发动机连同控制器的图;
5.图2是涡轮增压器的示例的截面图;
6.图3是涡轮增压器的示例的侧视图;
7.图4是组件的示例的一系列剖面图;
8.图5a、图5b、图5c、图5d、图5e、图5f和图5g是组件的示例的剖面图;
9.图6a和图6b是分别图示轴弯曲以及轴与筒弯曲的示例的一系列图;
10.图7是图示轴与筒弯曲的示例的一系列图;
11.图8是柔性筒组件的示例的剖面图;
12.图9是柔性筒组件的示例的透视图连同防旋转机构的示例的透视图;
13.图10是柔性筒组件的示例的侧视图;
14.图11是柔性筒组件的示例的剖面图;
15.图12是柔性筒组件的示例的剖面图;
16.图13是柔性筒组件的示例的剖面图;
17.图14是柔性筒组件的示例的一部分的剖面图;
18.图15是柔性筒组件的示例的透视图;
19.图16是图15的柔性筒组件的侧视图;
20.图17是图15的柔性筒组件的剖面图;以及
21.图18a和图18b是图15的柔性筒组件的一部分的一系列截面图。
具体实施方式
22.下面,描述涡轮增压发动机系统的示例,接着是部件、组件、方法等的各种示例。
23.涡轮增压器经常被利用来增加内燃发动机的输出。参考图1,作为示例,系统100可
以包括内燃发动机110和涡轮增压器120。如图1中所示,系统100可以是车辆101的一部分,其中系统100设置在发动机舱中并且连接到排气管道103,该排气管道将排气引导到排气出口109(例如,位于乘客舱105后面)。在图1的示例中,可提供处理单元107以处理排气(例如,经由分子的催化转化来减少排放等)。作为示例,可包括旨在减少声发射的消音器,诸如消声器。作为示例,可沿着一个或多个排气流动路径利用组合的处理单元和消音器。
24.如图1中所示,内燃发动机110包括:容纳一个或多个燃烧室的发动机缸体118,该一个或多个燃烧室操作性地驱动轴112(例如,经由活塞);以及为至发动机缸体118的空气提供流动路径的进气端口114和为来自发动机缸体118的排气提供流动路径的排气端口116。
25.涡轮增压器120可以起作用,以从排气中提取能量并将能量提供给进气空气,该进气空气可与燃料组合以形成燃烧气体。如图1中所示,涡轮增压器120包括空气入口134、轴122、用于压缩机叶轮125的压缩机壳体组件124、用于涡轮机叶轮127的涡轮机壳体组件126、另一个壳体组件128和排气出口136。壳体组件128可被称为中心壳体组件,因为它设置在压缩机壳体组件124与涡轮机壳体组件126之间。
26.在图1的涡轮增压器120中,轴122可以是包括各种部件的轴组件(例如,考虑其中涡轮机叶轮127焊接到轴122的轴和叶轮组件(swa)等)。作为示例,轴122可由设置在壳体组件128中(例如,在由一个或多个孔壁限定的孔中)的轴承系统(例如,(多个)轴颈轴承、(多个)滚动元件轴承等)可旋转地支撑,使得涡轮机叶轮127的旋转引起压缩机叶轮125(例如,如由轴122可旋转地联接)的旋转。作为示例,中心壳体旋转组件(chra)可以包括压缩机叶轮125、涡轮机叶轮127、轴122、壳体组件128和各种其他部件(例如,设置在压缩机叶轮125与壳体组件128之间的轴向位置处的压缩机侧板)。
27.在图1的示例中,可变几何形状组件129被示为部分地设置在壳体组件128与壳体组件126之间。这种可变几何形状组件可包括叶片(vane)或其他部件以改变通道的几何形状,该通道通向涡轮机壳体组件126中的涡轮机叶轮空间。作为示例,可提供可变几何形状压缩机组件。
28.在图1的示例中,废气门阀(或简单地,废气门)135定位成接近涡轮机壳体组件126的排气入口。可以控制废气门阀135以允许来自排气端口116的至少一些排气绕过涡轮机叶轮127。可将各种废气门、废气门部件等应用于常规的固定喷嘴式涡轮机、固定叶片的喷嘴式涡轮机、可变喷嘴式涡轮机、双涡流涡轮增压器等。作为示例,废气门可以是内部废气门(例如,至少部分地在涡轮机壳体内部)。作为示例,废气门可以是外部废气门(例如,操作性地联接到与涡轮机壳体流体连通的管道)。
29.在图1的示例中,还示出了排气再循环(egr)管道115,可选地,该egr管道可设置有一个或多个阀117,例如以允许排气流到压缩机叶轮125上游的位置。
30.图1还示出了用于至排气涡轮机壳体组件152的排气流的示例布置结构150、以及用于至排气涡轮机壳体组件172的排气流的另一个示例布置结构170。在布置结构150中,气缸盖154包括在内部的通道156,以将来自气缸的排气引导到涡轮机壳体组件152,而在布置结构170中,例如,在没有任何单独的、中间长度的排气管道系统的情况下,歧管176提供涡轮机壳体组件172的安装。在示例布置结构150和170中,涡轮机壳体组件152和172可被构造成与废气门、可变几何形状组件等一起使用。
31.在图1中,控制器190的示例被示为包括一个或多个处理器192、存储器194以及一个或多个接口196。这种控制器可包括电路,诸如发动机控制单元(ecu)的电路。如本文中所描述的,可选地,可结合控制器例如通过控制逻辑来实施各种方法或技术。控制逻辑可取决于一个或多个发动机操作条件(例如,涡轮rpm、发动机rpm、温度、负荷、润滑剂、冷却等)。例如,传感器可经由所述一个或多个接口196将信息传输到控制器190。控制逻辑可依靠这种信息,并且进而,控制器190可输出控制信号以控制发动机操作。控制器190可被构造成控制润滑剂流、温度、可变几何形状组件(例如,可变几何形状压缩机或涡轮机)、废气门(例如,经由致动器)、电动马达、或者与发动机、涡轮增压器(或多个涡轮增压器)等相关联的一个或多个其他部件。作为示例,涡轮增压器120可包括一个或多个致动器和/或一个或多个传感器198,其可例如联接到控制器190的一个或多个接口196。作为示例,废气门135可由控制器控制,该控制器包括响应于电信号、压力信号等的致动器。作为示例,用于废气门的致动器可以是机械致动器,例如,其可在不需要电力的情况下操作(例如,考虑被构造成响应于经由管道供应的压力信号的机械致动器)。
32.图2示出了涡轮增压器200的示例,该涡轮增压器包括涡轮机组件201、压缩机组件202和中心壳体203。涡轮机组件201包括被成形为容纳涡轮机叶轮205的涡轮机壳体204,并且压缩机组件202包括被成形为容纳压缩机叶轮207的压缩机壳体206。如图所示,轴208操作性地联接涡轮机叶轮205和压缩机叶轮207,如通过一个或多个轴承215和216支撑在中心壳体203的通孔中。
33.如图2中所示,涡轮机壳体204可以包括排气入口210和排气出口211,其中蜗壳212至少部分地由涡轮机壳体204限定。蜗壳212可以被称为涡管,当它朝向容纳涡轮机叶轮205的涡轮机叶轮空间向内成螺旋形时,其截面直径减小。
34.如图2中所示,压缩机壳体206可以包括空气入口213和空气出口211,其中蜗壳214至少部分地由压缩机壳体206限定。蜗壳214可以被称为涡管,当它从容纳压缩机叶轮207的压缩机叶轮空间向外成螺旋形时,其截面直径增大。
35.设置在压缩机壳体206与中心壳体203之间的是背板220,该背板包括可以接收止推套环222的孔221,该止推套环可以抵靠压缩机叶轮207的基端223邻接。如图所示,止推套环222可以包括径向向外延伸的润滑剂抛油环225,这可以帮助减少不期望的润滑剂流动(例如,至压缩机叶轮空间等)。
36.中心壳体203包括各种润滑剂特征,诸如润滑剂入口217、润滑剂孔218、润滑剂喷口219和润滑剂排放口229。如图所示,可以在润滑剂入口217处提供润滑剂以使其流动到润滑剂孔218和润滑剂喷口219,这些润滑剂喷口包括用于将润滑剂引导到轴承215的压缩机侧喷口以及用于将润滑剂引导到轴承216的涡轮机侧喷口。当轴承215和216可旋转地支撑轴208时,由于涡轮机叶轮205由穿过涡轮机壳体204的排气流驱动,因此润滑剂可以将热能从轴承215和216带走。
37.如图2的示例中所示,压缩机壳体206可以经由夹子231夹紧到背板220,背板220可以经由一个或多个螺栓232栓接到中心壳体203,并且中心壳体203可以经由一个或多个螺栓233栓接到涡轮机壳体204;注意,可利用各种其他技术来联接部件以形成涡轮增压器。
38.在图2的示例中,壳体203、204和206中的一个或多个可以是铸造的。例如,涡轮机壳体204可由铁、钢、镍合金等铸造。作为示例,考虑具有足够的镍量的耐蚀ni铸铁合金以产
生奥氏体结构。例如,考虑镍以从约12重量百分比到约40重量百分比的量存在。作为示例,增加的镍量可以提供减小的热膨胀系数(例如,考虑最小为约35重量百分比)。然而,增加的镍含量会增加耐蚀ni材料的成本;注意,在大范围的镍含量(例如,每立方厘米约7.3至7.6克)内密度倾向于相对恒定。耐蚀ni材料的密度倾向于比灰铸铁高约5%并且比铸青铜合金低约15%。关于可加工性,耐蚀ni材料倾向于好于铸钢;注意,增加的铬含量由于硬质碳化物量的增加所致而倾向于降低可加工性。当与不锈钢(例如,密度为每立方厘米约8克)相比时,耐蚀ni材料的成本可以更低并且质量更小(例如,密度更小)。
39.耐蚀ni材料倾向于展现合适的高温性质,其额定温度可超过480摄氏度(900华氏度)。耐蚀ni材料可以适合于用于柴油和汽油内燃发动机的涡轮增压器。作为示例,柴油发动机可以具有可处于大约860摄氏度的排气,并且作为示例,汽油发动机可以具有可处于大约1050摄氏度的排气。这种排气可以由涡轮机组件接收,该涡轮机组件包括由合适材料制成的涡轮机壳体。
40.如图所示,当与压缩机壳体206和中心壳体203相比时,涡轮机壳体204可以是相对大的部件,使得涡轮机壳体204的质量显著地贡献于涡轮增压器200的质量。
41.在图2的示例中,可相对于圆柱坐标系来限定涡轮增压器200的各种部件,该圆柱坐标系包括以中心壳体203的通孔为中心的z轴,该z轴可以与旋转组件的旋转轴线重合,该旋转组件包括涡轮机叶轮205、压缩机叶轮207和轴208。如所提到的,涡轮机叶轮可焊接到轴以形成轴和叶轮组件(swa),并且压缩机叶轮可螺纹连接到轴的一端上(例如,“无孔”压缩机叶轮)或具有通孔,该通孔接收轴的自由端,在那儿使用螺母或其他合适的部件将压缩机叶轮固定到轴。在图2的示例中,涡轮机叶轮205焊接到轴208,并且使用螺母235将压缩机叶轮207固定到轴208且因此固定到涡轮机叶轮205。
42.在图2的示例中,在从涡轮机叶轮205的毂252延伸的叶片254与涡轮机壳体204的护罩部分240之间存在间隙。如图所示,护罩部分240在截面图中为“j”形,其可以限定旋转体,该旋转体具有环形脊部分242和圆柱形部分244。如图所示,环形脊部分242可以在涡轮机叶轮205的进口段(inducer)部分处限定用于从蜗壳212流动到涡轮机叶轮空间的排气的喷嘴,该进口段部分可以由前缘限定,在那儿叶片254中的每一个包括前缘(l.e.)。如图所示,涡轮机叶轮205还包括出口段(exducer)部分,在那儿叶片254中的每一个包括后缘(t.e.)。在操作期间,排气经由部分地由护罩部分240的环形脊部分242限定的喷嘴从蜗壳212流动到叶片254的前缘,沿着由涡轮机叶轮205的相邻叶片254限定的、如被限制在毂252与护罩部分240的圆柱形部分244之间的通道流动,且然后流动到叶片254的后缘,在那里排气受限于较大直径的圆柱形壁272、略微圆锥形的壁274以及又一较大直径的圆柱形壁276。如图2中所示,圆柱形壁276可以由涡轮机壳体204的一部分限定,该部分包括诸如环形脊282之类的配件,该配件可以被利用来将排气管道固定到涡轮机壳体204。这种排气管道可与一个或多个其他部件(诸如,排气处理单元、消声器、另一个涡轮增压器等)流体连通。关于涡轮机壳体204的排气入口210,它也可被成形为联接到一个或多个排气管道,诸如例如排气集管、排气歧管、另一个涡轮机壳体(例如,用于多级涡轮增压器布置结构)等。
43.如图2中所示,涡轮机壳体204通过其结构特征及其形状来分割各种功能;然而,这些结构特征可以贡献于涡轮增压器的质量。
44.作为示例,涡轮增压器的重量可从约4千克(例如,8.8磅)到约40千克(例如,88磅)
或更大。
45.如所提到的,可以相对于圆柱坐标系来限定涡轮增压器,在该圆柱坐标系中,z轴可沿着长度。在图2的示例中,涡轮机壳体204的长度超过总长度的50%。当安装在车辆的发动机舱中时,涡轮增压器的总长度或尺寸可以是一个因素,因为它呈现了设计约束。
46.图2的涡轮增压器200可以经由一种或多种介质来冷却,一种或多种介质诸如为润滑剂(例如,油)、水(例如,散热器流体等)和空气(例如,经由具有周围空气或车辆发动机舱空气的环境)。
47.关于润滑剂冷却(例如,油,无论是天然的、合成的等),存在一些折衷。例如,如果碳质润滑剂在太长的时间内达到太高温度(例如,考虑时间-温度相关性),则可能发生碳化(例如,也被称为结焦或“焦化”)。焦化会通过各种机制中的任何一个来加剧热生成和热保留,并且随时间推移,积炭会缩短被润滑的轴承系统的寿命。作为示例,积炭可能引起热传递的减少和热生成的增加,这可导致轴承系统的失效。为了克服焦化,涡轮增压器可被构造成改进润滑剂流动。例如,泵可对润滑剂加压以增加流动速率,从而减少润滑剂在高温区域中的滞留时间。然而,润滑剂压力的增加会加剧各种类型的润滑剂泄漏问题。例如,轴承系统的润滑剂压力的增加会导致润滑剂泄漏到排气涡轮机、空气压缩机或两者。经由排气涡轮机的逃逸会导致可观察水平的烟,而经由空气压缩机的逃逸会导致润滑剂进入中间冷却器、燃烧室(例如,燃烧气缸)等。
48.关于在操作期间经历的温度,它们可以取决于流动到涡轮增压器的排气涡轮机的排气的温度,该温度可以取决于内燃发动机是以汽油为燃料还是以柴油为燃料(例如,如所提到的,柴油发动机可具有处于大约860摄氏度的排气,并且汽油发动机可具有处于大约1050摄氏度的排气)。而且,关于温度,考虑图1的示例布置结构150和170,其中涡轮机壳体组件152和172极接近于燃烧气缸,这可能导致涡轮机壳体组件152和172经历更高的排气温度和/或更高的周围温度。
49.图3示出了涡轮增压器300的示例,该涡轮增压器包括:压缩机组件340,其具有用于压缩机叶轮的压缩机壳体;涡轮机组件360,其具有用于涡轮机叶轮的涡轮机壳体;用于一个或多个轴承或者轴承组件的中心壳体380,所述一个或多个轴承或者轴承组件用以可旋转地支撑轴和叶轮组件(swa)的轴;以及具有连杆机构354的致动器350,该连杆机构用以控制用于涡轮机组件360的废气门的控制臂组件358。涡轮增压器300可以包括图2中所示的部件中的一个或多个。在图3的视图中,涡轮机组件360的排气入口不可见,因为它在相对侧上。空气或排气的总的流动方向由箭头指示。致动器350被示为安装到压缩机组件340,这可以帮助降低致动器350所经历的温度(例如,与使致动器安装在涡轮机壳体上相比)。涡轮增压器300可以是车辆(诸如例如,图1的车辆101)的一部分。作为示例,涡轮机组件360可以可选地诸如以图1的示例布置结构150或170中的一种来布置。
50.图4示出了包括各种部件的组件400的示例的剖面图,这些部件包括壳体410、轴420、压缩机侧板440、涡轮机侧板480和轴承筒组件500。如图所示,压缩机侧板440可被适当地成形为具有适当的特征,例如以容纳压缩机叶轮403和间隔件444和/或止推套环、润滑剂抛油环等。如图所示,涡轮机侧板480可被适当地成形为具有适当的特征,例如以限定流体区域(例如,用于冷却流体等)、容纳作为轴和叶轮组件(swa)的一部分的涡轮机叶轮、一个或多个密封元件间隔件490(例如,活塞环间隔件等)。
51.作为示例,组件400可包括经由壳体410中的孔被接收的速度传感器470,其中速度传感器470可延伸到轴承筒组件500或进入该轴承筒组件500中。
52.图4还示出了板445的示例,该板可以被利用来将轴承筒组件500定位在壳体410中。如图所示,可以在壳体410的孔的压缩机端处提供凹部,其中轴承筒组件500的一部分可以被接收在该凹部中,其中板445然后可以放置在轴承筒组件500的该部分的至少一部分上,由此将轴承筒组件500轴向地定位在壳体410的孔中,其中会发生径向移动(例如,考虑如由润滑剂膜等支撑的轴承筒组件500)。
53.作为示例,组件400可以包括一个或多个防旋转特征,所述一个或多个防旋转特征限制轴承筒组件500在壳体410中在方位角上绕轴420的旋转轴线旋转。例如,轴承筒组件500可包括接收固定到壳体410的延伸部的凹口,其中该延伸部接触凹口表面以限制旋转,同时仍然允许轴承筒组件500的径向移动(见例如图9)。
54.图5a、图5b、图5c、图5d、图5e、图5f和图5g示出了轴承筒组件500(也被称为bc组件500或bca 500)的示例的一系列剖面图。
55.在图5a中,示出了bc组件500连同轴420以及分别用于压缩机叶轮端和涡轮机叶轮端的间隔件444和490。如图5a的示例中所示,轴承筒组件500包括柔性壳900,该柔性壳可以承载压缩机侧轴承组件640(例如,考虑一个或多个滚动元件轴承(reb))和涡轮机侧轴承组件660(例如,考虑一个或多个reb)。bc组件500可以包括诸如以下各者的部件:一个或多个间隔件742、744、760和800;一个或多个挡圈750;等。如图5a的示例中所示,柔性壳可以包括切口925,这些切口可被称为空隙,它们可以赋予柔性壳900柔韧性(例如,可弯曲性和类似弹簧的作用)。
56.图5a还示出了压缩机侧轴承组件640和涡轮机侧轴承组件660的多个部分的放大视图。如图所示,压缩机侧轴承组件640包括:由间隔件742间隔开的内座圈642-1和642-2;由间隔件744间隔开的外座圈646-1和646-2,该间隔件可以包括润滑剂通道和喷口;以及滚动元件644-1和644-2,其可以通过保持架643-1和643-2支撑在内座圈642-1和642-2与外座圈646-1和646-2之间。
57.作为示例,压缩机侧轴承组件640可以被称为多reb组件,其中一个reb组件由内座圈642-1、保持架643-1、滚动元件644-1和外座圈646-1形成,并且其中另一个reb组件由内座圈642-2、保持架643-2、滚动元件644-2和外座圈646-2形成。在这种示例中,压缩机侧轴承组件640可以提供超过由涡轮机侧轴承组件660提供的支撑的支撑。例如,各种操作力可主要由压缩机侧轴承组件640处理。
58.如图5a中所示,涡轮机侧轴承组件660可以包括内座圈662、外座圈666、以及可以通过保持架663支撑在内座圈662与外座圈666之间的滚动元件664。在图5a的示例中,轴420可以包括多个直径,诸如压缩机侧轴承组件直径dc和涡轮机侧轴承组件直径dt。作为示例,直径dc和dt可不同,例如,dt可略大于dc。如图5a中所示,轴420可以包括直径小于dc和小于dt的中间区段。
59.在图5a的示例中,外座圈646-1和646-2可以过盈配合在柔性壳900中,并且外座圈666可以过盈配合在柔性壳900中。这种过盈配合可以提供外座圈646-1、646-2和666中的每一个与柔性壳900之间的接触,其中柔性壳900可以由绕其外表面的一个或多个润滑剂膜(例如,如形成在柔性壳900与壳体的孔之间的一个或多个径向间隙中)支撑。如所解释的,
柔性壳900可以是可弯曲的,其中在轴420与安装到其的相应部件(例如,旋转组件)一起旋转时,可响应于一种或多种模式而发生弯曲。如所解释的,柔性壳900也可以以类似弹簧的方式作用,例如以将预载荷施加到涡轮机侧轴承组件660的外座圈666。在这种组装状态下,压缩机侧轴承组件640所经历的力可被有益地改变。
60.在图5a的示例中,间隔件742可以设置在内座圈642-1与642-2之间,并且间隔件744可以设置在外座圈646-1与646-2之间。如图所示,挡圈750可以是轴向位置保持部件,其被接收在柔性壳900的环形凹口975(例如,环形凹槽、肩部等)中以定位压缩机侧轴承组件640的两个reb的外座圈646-1和646-2,其中柔性壳900的肩部977为压缩机侧轴承组件640的两个reb的外座圈646-1和646-2的轴向定位提供了另一个表面。作为示例,挡圈750可以是倒斜角的,以帮助减小轴承外座圈646-1和646-2与间隔件744之间的轴向间隙(也见例如图5e、图5f和图5g)。如图所示,间隔件760可以在压缩机侧轴承组件640的内座圈642-2与涡轮机侧轴承组件660的内座圈662之间延伸,并且可被称为中间间隔件。
61.在图5a的示例中,间隔件444和490也可以接触内座圈(例如,分别是内座圈642-1和内座圈662)。在这种示例中,轴向层叠可以从左到右包括间隔件444、压缩机侧轴承组件640的内座圈642-1和642-2(其中间隔件742设置在这些内座圈之间)、间隔件760、涡轮机侧轴承组件660的内座圈662、以及间隔件490,其中,例如,间隔件490具有抵靠轴420和/或涡轮机叶轮(例如,如形成轴和叶轮组件(swa))的一部分的硬止挡件。前述轴向层叠部件可以配合到轴420,使得它们与轴420一起旋转(例如,成为旋转组件的一部分)。例如,考虑过盈配合到轴420的轴向层叠部件与轴420的外表面接触,该轴的外表面的直径在轴420的轴向长度上可变化(例如,具有直径恒定的一个或多个区域、直径减小和/或增大的过渡区域等)。
62.图5b和图5c示出了涡轮机侧轴承组件660相对于轴向力的施加的放大视图,使得在轴向堆叠的部件中沿着轴420的轴向间隙(δzg)可以被消除以使柔性壳900通电。在通电状态下,柔性壳900可以相对于涡轮机侧轴承组件660提供预载荷力。
63.在图5a、图5b和图5c的示例中,与轴420一起旋转的轴向堆叠的可旋转部件可以通过轴向力被压缩,该轴向力是通过拧紧压缩机叶轮403而施加的。例如,可利用螺母,该螺母包括与轴420的螺纹配合的螺纹,使得螺母的拧紧在压缩机叶轮403上施加了沿着轴向堆叠传输的压缩力。由于部件之间的摩擦,轴向压缩允许将扭矩从涡轮机叶轮传递到压缩机叶轮的能力,其中经由由涡轮机叶轮从排气中提取的能量生成这种扭矩。
64.如图5b的放大视图中所示,响应于在轴420上拧紧压缩机叶轮403,施加压缩力(f
cw
),该压缩力压缩沿着轴420的表面的各内部件。如图5c的放大视图中所示,间隙(δzg)可以闭合,使得间隔件760可以将力施加到涡轮机侧轴承组件660的内座圈662,该涡轮机侧轴承组件包括包含滚动元件664的保持架663和外座圈664。如所指示的,经由类似弹簧的作用,柔性壳900可以将预载荷力(f
pl
)施加到间隔件800,其中间隔件800可以接触外座圈666以传递预载荷力(f
pl
)。
65.如图5a中所示,间隔件800可以抵靠柔性壳900的肩部979坐置,使得可以在间隔件800与柔性壳900之间传递力。在图5c的放大视图中,没有示出肩部800,注意,柔性壳900可以包括多个肩部,诸如充当用于间隔件800的止挡件的离散肩部;注意,在图11、图12和图13的示例中也可以看到间隔件800,其中示出了键和键槽特征。因此,在图5a的剖面图中,肩部
979可以是键槽的一部分,其中间隔件800的键被接收在键槽中。
66.如所解释的,在组装期间,在bca 500定位在涡轮增压器的中心壳体中的情况下,可以将一定量的压缩力施加到柔性壳900以生成用于涡轮机侧轴承组件660的期望预载荷(例如,预载荷力)。
67.作为示例,预载荷可以超过100n,这可以取决于尺寸、应用等。例如,考虑柔性壳900压缩约0.05mm至约1mm的轴向距离,其中柔性壳900生成超过100n的力(例如,考虑0.4mm和800n)。作为示例,可对柔性壳定级,例如,考虑每mm约0.5kn至每mm约4kn的压缩定级(例如,考虑柔性壳被定级为每mm约2kn,其中压缩大于0.05mm且小于约1mm)。作为示例,一种方法可以包括将柔性壳压缩小于约1mm以生成预载荷力。相比之下,在利用弹簧部件而不是柔性壳的情况下,弹簧部件可具有超过1mm的行程,这可能受到外座圈的摩擦的影响。
68.图5d示出了bc组件500连同以下各者的示意图:压缩机叶轮403、涡轮机叶轮405(例如,作为整体部件焊接在一起的轴和叶轮组件(swa)的一部分)、壳体410、轴420(例如,作为swa的一部分)、板445、间隔件444和490、挡圈750、以及间隔件760和800。图5e、图5f和图5g示出了关于一种组装方法和一种操作方法的压缩机侧轴承组件640的一部分的示意图。作为示例,一种压缩柔性壳以将预载荷赋予给涡轮机侧轴承组件的方法可以提供将适当的预载荷赋予给压缩机侧轴承组件,这可有利地改变压缩机侧轴承组件的推力动力学。例如,所赋予的预载荷可以改变内部力分布,并且在一定程度上还可以改变完整的轴承筒组件(bca)的载荷能力。
69.在图5e的示例中,由于柔性壳900的长度可以长于如装配到轴420的外表面的各种部件的轴向堆叠长度,因此在间隔件744(例如,具有(多个)润滑剂喷口)与外座圈646-2之间图示了不同的间隙(δzo);注意,间隔件490接触轴420和/或涡轮机叶轮405的一部分以形成轴向硬止挡件。如图所示,间隔件742可以与内座圈642-1和642-2接触。在图5e的构型中,在压缩机侧轴承组件640上不存在轴向预载荷(例如,预载荷等于0n)。作为示例,间隙(δzo)可以是相对小的(例如,小于0.1mm且大于0.001mm)。作为示例,间隙(δzo)可以是约0.01mm的数量级加或减一个数量级(例如,0.001mm至0.1mm)。
70.在图5f的示例中,间隙(δzo)被消除,使得在外座圈646-1与间隔件744之间以及在间隔件744与外座圈646-2之间存在接触。例如,当在轴420上拧紧螺母435时(例如,经由配合螺纹等),压缩力被施加到压缩机叶轮403,该压缩机叶轮由间隔件444承载,该间隔件是沿着轴420的如被间隔件490的一端硬止挡的轴向堆叠的一部分。在这种示例中,通过拧紧螺母435在内座圈642-1和642-2以及间隔件742上施加夹持载荷,使得间隔件742以及内座圈642-1和642-2开始轴向地压缩,直到轴向游隙被完全去除(例如,间隙(δzo)闭合)。在图5f的状态下,轴向预载荷仍然可以约为零(例如,预载荷约为0n)。如所解释的,间隔件742可以响应于力的施加而被轴向地压缩,并且所解释的,间隙(δzo)可以是相对小的,使得通过间隔件742可以适应期望的量的轴向压缩。作为示例,在压缩机叶轮是无孔的情况下,压缩机叶轮相对于轴的旋转可提供压缩力的施加。
71.在图5g的示例中,夹紧载荷增加,使得它继续压缩间隔件742,直到施加了期望的全部夹紧载荷。在这种方法中,预载荷在压缩机侧轴承组件640的内部产生,其中轴向轴承游隙被完全去除。预载荷可以取决于轴承刚度和压缩机间隔件长度。如所解释的,在间隙(δzo)被去除之后,间隔件742可以响应于力的施加而进一步被轴向地压缩。
72.如所解释的,如图5b中所示的沿着轴向堆叠沿着轴表面的间隙(δzg)可以大于如图5e中所示的相对于压缩机侧轴承组件640的外座圈646-1和646-2的间隙(δzo)。如所解释的,将螺母拧紧到轴上以将力施加到压缩机叶轮可以提供闭合轴承筒组件(bca)的一个或多个间隙,使得在该bca内存在期望的力。在这种示例中,一个间隙可以是沿着装配到轴的内轴向堆叠,且另一个间隙可以是相对于压缩机侧轴承组件的外座圈。
73.如所解释的,bca可以由壳体的孔内的一个或多个润滑剂膜支撑,其中该bca支撑旋转组件。作为示例,bca可经由边沿(rim)轴向地位于壳体的孔中,其中bca的径向移动是可能的,其中这种径向移动可以由一个或多个润滑剂膜来支持。作为示例,可提供一个或多个防旋转特征,其起作用以限制bca在壳体的孔中的旋转(见例如图9)。
74.如所解释的,柔性壳可以被利用来将轴向预载荷施加到涡轮机侧轴承组件(例如,经由在轴的压缩机端上拧紧螺母等)。通过经由柔性壳将预载荷施加到涡轮机侧轴承组件,可以有利地改变压缩机侧轴承组件的推力动力学。进一步地,这种柔性壳还可以帮助将一个或多个轴承组件保持在相对于旋转轴线更加平面的取向上。例如,更加平面的取向可以使用一个平面来限定,其中旋转轴线垂直于该平面。在这种示例中,表面(例如,圆柱形表面等)可以更加对齐(例如,更加平行)。
75.图6a和图6b示出了组件602和604的近似图形表示,其中组件602包括设置在壳体605中的硬壳607,并且其中组件604包括柔性壳609。
76.如图6a中所示,硬壳607可以经由润滑剂层(例如,油等)受到液压支撑,该润滑剂层可以形成挤压膜阻尼器(sfd)。作为示例,sfd可以提供阻尼,从而可以帮助减轻由诸如转子不平衡质量和外部载荷(诸如,传输到涡轮增压器的发动机振动)之类的因素引起的振动。在这种示例中,阻尼可以帮助降低损坏的风险、减少磨损、降低噪音、减少接触和/或接触力等。sfd可以被提供作为在壳的一个或多个表面与壳体的限定孔(例如,通孔等)的一个或多个表面之间的膜层。在这种示例中,膜层可以有效地“软化”部件与一个或多个壳体表面的接近,以增加阻尼效果。sfd可以包括作为对可在环形、环轴承元件的表面处提供的一个或多个流体动力学膜的补充的一个或多个膜,注意,可经由润滑剂(例如,油等)对滚动元件轴承等的滚动元件进行润滑。
77.作为示例,由sfd支撑的壳可顺从在壳体的孔内的一定量的径向移动。例如,硬壳607和柔性壳609可以在壳体605的孔中沿一个或多个径向方向移动(例如,向上、向下、侧到侧等)。作为示例,壳可以是浮动壳或半浮动壳,其中半浮动壳可以通过轴向地定位等而在轴向移动方面受限制(例如,经由与一个或多个其他部件接触等)。
78.在操作期间,轴可以展现出一种或多种弯曲模式。liu等人的文章《基于有限元法的热环境中涡轮增压器转子-轴系统的动态行为分析(shock and vibration(《冲击和振动》),2020年,第1-18页(10.1155/2020/8888504))通过引用并入本文中。liu等人的文章提供了关于高速旋转的转子-轴承系统的操作及其材料的内部阻尼的有限元法研究。特别地,分析具有内部阻尼复合材料的转子-轴系统在温度场作用下的动态行为,其中温度场以随转子速度而增加的方式增加由于复合材料的内部阻尼所生成的切向力,这会使转子-轴系统不稳定。分析涉及模态阻尼系数、稳定极限速度和不平衡响应,其中结果预测了温度场中的内部阻尼能量耗散以预测转子动态性能。liu等人的文章提供了转子-轴承系统的运动方程:
[0079][0080]
其中q是全局力矢量,m是质量矩阵,c是阻尼矩阵,且k是刚度矩阵,该刚度矩阵包括弯曲矩阵。
[0081]
如所解释的,在操作期间,会发生轴弯曲,这可经由实际操作和/或经由数值建模来理解。轴弯曲可以取决于各种因素(例如,几何形状、速度、温度、材料性质等)。
[0082]
在图6a中,硬壳607(例如,刚性载体)不能适应轴弯曲(例如,轴挠曲),如由角度α所指示的,出于图示的目的,该角度被夸大。如由力箭头所示,示出了径向力(fr),它可以表示一定量的轴不平衡,并且其中摩擦力(ff)可以限制(例如,减小)弹簧元件606的弹簧预载荷,该弹簧元件将力施加到涡轮机侧轴承组件的外座圈。如图6a中所示,当轴承组件的内座圈配合到轴时,它们会相对于其对应的外座圈变得未对准,因为硬壳607不适应由轴弯曲造成的空间变化。在图6a中,涡轮机侧轴承组件的外座圈并未过盈配合在硬壳607中,因为弹簧606必须能够施加预期大于外座圈和硬壳607的内表面之间可能发生的摩擦力(ff)的力(例如,预期涡轮机侧外座圈有一定的轴向移动,且因此提供一定量的径向间隙)。
[0083]
如图6a中所示,硬壳607可以被形成为固体圆柱形部件和/或可以由硬的材料形成。相比之下,如图6b中所示,柔性壳609可以形成有提供可弯曲性的特征和/或可以由具有小于硬壳607的材料的刚度的材料形成。在图6b的示例中,柔性壳609可以包括空隙611(例如,切口),这些空隙可以是机加工的空隙、铸造的空隙等。如图所示,空隙611可以成系列和/或成组提供,使得根据可弯曲性,刚度被降低。作为示例,空隙可提供质量的减少、暴露更多的表面积等。这种与空隙相关的性质可提供一个或多个性能益处。例如,考虑如提供更轻的涡轮增压器和/或更少的热质量的更少的质量。关于增加的表面积,考虑例如改进的热能传递、改进的流体流动等。作为示例,出于热膨胀和/或收缩的目的,可定制空隙图案。作为示例,根据可弯曲性以及可选地可压缩性和/或可膨胀性(例如,轴向和/或径向地),其可通过可类似于泊松比的比率来表征,可定制空隙图案。
[0084]
如关于bca 500所解释的,在给定间隔件800(其可以被接收在柔性壳900的凹槽中(例如,以键/键槽的方式等))的情况下,柔性壳900的包括切口925(例如,空隙)的部分可以被利用来将预载荷施加到涡轮机侧轴承组件的外座圈(例如,连同可弯曲性)。这种方法可以在不使用弹簧元件(诸如,如图6a中所示的弹簧元件606)的情况下实施。如所提到的,涡轮机侧轴承组件的外座圈可以过盈配合在柔性壳中。如图6b中所示的,摩擦力被示为在柔性壳900的外表面和壳体605的孔的孔壁表面之间,其中其间的间隙提供了润滑剂膜形成。在这种位置中润滑剂膜的存在可以减小移动和/或摩擦的影响。如关于图6a所解释的,由于弹簧元件606的弹簧作用所致的接触会引起磨损、粘连等;而在图6b中,涡轮机侧轴承组件的外座圈是过盈配合的并且预期是静止的,使得不发生可能引起磨损的移动。
[0085]
如所解释的,通过经由在轴上拧紧压缩机叶轮来压缩轴向堆叠的内部件,柔性壳可以将预载荷赋予给涡轮机侧轴承组件的外座圈。在这种示例中,间隔件可以轴向地设定在柔性壳的凹槽内,使得当柔性壳经由轴向堆叠的内部件的压缩而被压缩时,柔性壳被通电以经由间隔件将预载荷赋予给涡轮机侧轴承组件的外座圈。
[0086]
如解释的,在图6b中,柔性壳609与硬壳607相比具有降低的弯曲刚度。利用可弯曲性,轴承组件中的一个或多个轴承组件的外座圈可以相对于一个或多个对应的内座圈更加对齐。关于角度α,可以减少不期望的内部轴承倾斜,如由角度β所指示的,使得轴承组件的
外座圈和内座圈可以随着每次轴旋转而保持适当地对齐(例如,基本上平行等)。
[0087]
如所解释的,由于外座圈(例如,外环)和壳(例如,筒体)之间的摩擦(其中存在弹簧预载荷滑动接触),会发生在操作条件下潜在地不一致的涡轮机轴承预载荷。例如,对于由于转子弯曲(例如,轴挠曲)导致的相对高的轴承倾斜角度,或由于高径向载荷导致在操作条件下涡轮机轴承外座圈和壳的内孔之间的高摩擦,会出现问题。如所解释的,可利用柔性壳对布置在柔性壳中的滚动元件轴承(例如,轴承筒)进行轴向预载荷,其中柔性壳可以是或包括一个或多个弹性元件。在这种示例中,可以减少或完全去除外座圈和柔性壳之间的摩擦接触,并且如所解释的,由于柔性壳的弯曲刚度减小,可以减小轴承倾斜(例如,内座圈相对于外座圈),因为柔性壳可以更好地遵循转子弯曲(例如,轴弯曲)。
[0088]
作为示例,柔性壳可由诸如钢、钛等材料制成。关于钛,与钢相比,它可减小质量并提供较低的杨氏模量。钛的杨氏模量可以为约100gpa,而超级不锈钢(奥氏体)可以为约200gpa。铁可以为约192gpa,sus 304为约199gpa,sss(铁素体)为约215gpa,铝为约69gpa,哈氏合金c为约205gpa,并且铜为约117gpa。
[0089]
图7示出了具有一定量的弯曲的bca 500的近似剖面图,该弯曲可对应于轴的一种或多种弯曲模式。
[0090]
图8示出了bca 500的示例的剖面图,其中柔性壳900可以包括用于插入传感器的一部分的开口990(例如,用于速度传感器的速度传感器开口等)。在图8的示例中,柔性壳900可以包括键槽982,该键槽可以接收间隔件800的键820,其中键820和键槽982可以是防旋转特征以及将涡轮机侧轴承外座圈轴向地定位在壳900中并且还起到在方位上将间隔件800定位在柔性壳900中的作用。
[0091]
在图8的示例中,柔性壳900被示为包括作为一系列的成组切口925的切口925。例如,考虑一系列的至少三组切口925。在图8的示例中,示出了一系列的九组切口925,其中每组包括六个切口,这些切口被示为具有圆形端的圆弧槽(例如,弧形切口)。在这种示例中,一组中的相邻圆弧槽由材料间隔,其中该材料可以由弧跨度来定义,该弧跨度小于圆弧槽之一的弧跨度。在这种示例中,一组切口可以根据圆柱坐标系(z、r和θ)使用轴向尺寸(见例如z
co
)和方位角尺寸(例如,度数)来定义,该圆柱坐标系具有沿着柔性壳的中心纵向轴线的轴线,该轴线对应于轴(例如,旋转组件)的旋转轴线。一系列的切口可以由柔性壳的材料环间隔,其中,例如,该材料环可以经由轴向尺寸(见例如zm)来定义。在图8的示例中,切口925中的每一个被示为具有轴向尺寸(z
co
),该轴向尺寸大于将该系列中的成组切口925分离的材料环的轴向尺寸(zm)。在图8的示例中,其中每组切口925包括六个切口,一组中的每个切口925的弧跨度可以小于约60度,例如,考虑从约30度到约59度的范围(例如,其中材料将相邻的切口间隔开约30度到约1度)。作为示例,虽然提到了六个,但可针对一组利用更少或更多的切口。作为示例,可定制各种尺寸连同系列成组切口的数量,以提供柔性壳的期望的可弯曲性和类似弹簧的作用。如图所示,开口990可通过连接若干个切口925(例如,来自两个或更多个系列)而形成。
[0092]
图9示出了bca 500的示例的透视图,其中柔性壳900可以包括用以将轴承筒轴向地定位在壳体内的边沿910以及一个或多个润滑剂开口994和996,其中润滑剂开口994可以是用于润滑压缩机侧轴承组件640的部分的压缩机侧润滑剂开口,并且其中润滑剂开口996可以是用于润滑涡轮机侧轴承组件660的部分的涡轮机侧润滑剂开口。
[0093]
如图9中所示,柔性壳900可以包括作为防旋转机构特征的凹口907。在这种示例中,壳体410可以包括接收键447的凹部417,该键可以被接收在凹口907(例如,键槽)中,使得柔性壳900的旋转在壳体410中受到限制。如图所示,壳体410可以包括一个或多个插口415,所述一个或多个插口可以适合于接收螺栓等,例如以固定板445(见例如图4)。由于柔性壳900可以“浮”在润滑剂膜上,因此提供一定量的径向移动(例如,经由一个或多个间隙),同时可以限制轴向移动和方位角移动(例如,经由键/键槽、经由板等)。如图4中所示,板445可以起到限制柔性壳900的轴向移动的作用(例如,经由如被接收在壳体410的凹部中的边沿910)。
[0094]
如所解释的,轴承筒组件和转子组件可以由柔性壳的边沿来保持,该边沿被轴向地限制在壳体和板之间。这种布置可以帮助限制轴向热膨胀的影响(例如,由于边沿可以是轴向地相对薄的,诸如小于柔性壳的长度的10%)。这种布置可以帮助保持最小的轴向游隙,同时轴承筒组件可以自行轴向地热膨胀。
[0095]
图10示出了如包括柔性壳900的bca500的示例的侧视图,该柔性壳包括压缩机侧端904、涡轮机侧端906以及设置在端904和906之间的柔性部分920,该柔性部分设置在压缩机侧部分940和涡轮机侧部分960之间。在图10的示例中,柔性部分920包括切口925,这些切口可被成形为可以由一个或多个宽度以及一个或多个弧长定义的曲线形槽,宽度和弧长可至少部分地依据绕壳900的中心轴线的度数来指定。
[0096]
在图10的示例中,压缩机侧部分940具有外直径d4,并且涡轮机侧部分960具有外直径d6,其中d4大于d6。如图所示,柔性部分920可具有约等于d4的外直径,使得在柔性部分920的涡轮机侧端处出现如从d4到d6的减低的过渡部。如图所示,柔性部分920可以具有轴向长度z2,该轴向长度可以大于压缩机侧部分940的轴向长度z4并且该轴向长度可以大于涡轮机侧部分960的轴向长度z6。如图所示,边沿910可以由外直径d1和轴向长度z1定义,其中d1超过d4,并且其中z1是柔性壳900的总长度的大约1/30。作为示例,z1可以是柔性壳900的总长度的大约1/10至大约1/40(例如,约10%至约2.5%)。
[0097]
如图10中所示,压缩机侧部分940可以包括直径为d4的挤压膜阻尼器外表面,并且涡轮机侧部分960可以包括直径为d6的挤压膜阻尼器外表面。
[0098]
图11示出了bca500的示例的透视剖面图,其中间隔件800。如图所示,间隔件800可以包括一个或多个润滑剂通道810,所述一个或多个润滑剂通道可以与柔性壳900的涡轮机侧部分960的一个或多个润滑剂开口996流体连通。
[0099]
如图11中所示,间隔件800可以包括作为键820的一个或多个凸起部(lobe),所述一个或多个凸起部可以设置在作为柔性壳900的键槽982的一个或多个凸起部凹部中。在这种示例中,作为键820的所述一个或多个凸起部和作为键槽982的所述一个或多个凸起部凹部可作为键-键槽对来操作,这可以帮助保证间隔件800相对于柔性壳900的涡轮机侧部分960的所述一个或多个润滑剂开口996的正确取向。例如,键-键槽特征的奇数或以其他方式的不对称布置可提供所述一个或多个润滑剂开口996和所述一个或多个润滑剂通道810的正确对准。作为示例,键-键槽布置可提供防旋转,使得例如间隔件800不相对于柔性壳900旋转。如所解释的,键-键槽布置可被利用来对准各种润滑剂特征(例如,润滑剂馈送到润滑剂喷口通道等)。
[0100]
图12示出了bca 500的示例的另一个透视剖面图,其中示出了一个或多个润滑剂
喷口812,所述一个或多个润滑剂喷口可以与间隔件800的所述一个或多个润滑剂通道810中的一个或多个流体连通。在这种示例中,润滑剂可以被适当地引导到一个或多个轴承组件(例如,考虑轴承组件460)的一个或多个滚动元件。在这种示例中,流可基本上被径向地引导,且然后至少部分地轴向地朝向一个或多个滚动元件引导。
[0101]
图13以截面示出了bca 500的示例的端视图,其中间隔件750的一部分是可见的,并且间隔件760是可见的。如图所示,间隔件750可小于完整的环,并且可被成形为具有端部分的c形环,出于安装(例如,由柔性壳900的环形凹槽接收)的目的,这些端部分可以彼此靠近以使间隔件750的直径变小(例如,倒斜角的挡圈)。
[0102]
图14示出了如包括以下各者的bca 500的示例的一部分的透视剖面图:柔性壳900、间隔件742、间隔件744、滚动元件644-1和644-2、内座圈642-1和642-2、外座圈646-1和646-2、以及滚动元件保持架643-1和643-2。如图14中所示,间隔件744可包括间隔件800的一个或多个特征。例如,考虑一个或多个凸起部、一个或多个润滑剂通道、一个或多个润滑剂喷口等。例如,考虑润滑剂喷口748与润滑剂开口994流体连通,其中润滑剂喷口748可以是延伸部上的两个润滑剂喷口中的一个,其中一个润滑剂喷口面向一个方向且另一润滑剂喷口面向另一个方向,使得单个延伸部可以提供对两个轴承组件的润滑。作为示例,可提供键和键槽特征,使得间隔件744可以位于柔性壳900中,使得润滑剂开口被对准(见例如间隔件800和柔性壳900的键和键槽特征)。
[0103]
图15示出了轴承筒组件1500的示例,该轴承筒组件包括压缩机侧轴承组件1640、涡轮机侧轴承组件1660和柔性壳1900,其中柔性壳1900可以是用于压缩机侧轴承组件1640的滚动元件和涡轮机侧轴承组件1660的滚动元件的整体外座圈。作为示例,柔性壳1900可以由单件材料机加工而成。如图所示,可以经由切口1925使柔性壳1900变柔性,这些切口可以以一种或多种方式形成,例如成系列。在图15的示例中,柔性壳1900包括切口1925的轴向系列,其中开口基本上是圆形的并且具有连接成对的这些开口的弧部分。在这种示例中,如果柔性壳1900被轴向地压缩,则它可以施加膨胀力,该膨胀力在外座圈处被轴向向外引导以将预载荷施加到压缩机侧轴承组件1640的滚动元件以及将预载荷施加到涡轮机侧轴承组件1660的滚动元件。作为示例,柔性壳1900可以提供一定量的弯曲,这可帮助适应轴弯曲(例如,以帮助维持内座圈和外座圈的充分对准)。
[0104]
如图15的示例中所示,柔性壳1900可以包括润滑剂井1991和1993,其中润滑剂井1991包括用于润滑压缩机侧轴承组件1640的一个或多个润滑剂开口1994,并且其中润滑剂井1993包括用于润滑涡轮机侧轴承组件1660的一个或多个润滑剂开口1996。
[0105]
图16示出了轴承筒组件1500的侧视图。如图所示,柔性壳1900可以包括相对端1904和1906、压缩机侧部分1940和涡轮机侧部分1960,其中切口1925在中心部分1920中。在图16的示例中,示出了开口1921,该开口可以被利用作为润滑剂排放口、用于接收防旋转销等。如图16中所示,压缩机侧部分1940可以至少部分地经由轴向长度z4和外直径d4定义,中心部分1920可以至少部分地经由轴向长度z2和外直径d2定义,并且涡轮机侧部分1960可以至少部分地经由轴向长度z6和外直径d6定义。在图16的示例中,润滑剂井1991和1993被示为形成有朝向中心部分1920向内减小的外直径,这可帮助将润滑剂喷口朝向压缩机侧轴承组件1640和涡轮机侧轴承组件1660瞄准。
[0106]
图17示出了轴承筒组件1500在壳体1710的孔中的剖面图,该壳体在孔的一端处包
括肩部1715且在孔的另一端处包括止推板1720。如图17中所示,压缩机侧轴承组件1640可以包括内座圈1642,并且涡轮机侧轴承组件1660可以包括内座圈1662,其中内座圈1642和1662可以彼此接触。作为示例,这种内座圈可以过盈配合到轴,其中,例如,可以相对于柔性壳提供一定量的预载荷,因为滚动元件可以与柔性壳的内座圈部分和外座圈部分接触。如关于示例bca 500所解释的,拧紧螺母可提供压缩沿着轴布置的轴向堆叠的部件,其中该轴向堆叠的部件的缩短可能引起压缩力被施加到柔性壳。如所解释的,在这种示例中,间隙可闭合和/或减小。在图17的示例中,考虑将压缩力施加到内座圈1642和1662,使得压缩力被施加到柔性壳1900。在这种示例中,可经由利用柔性壳1900来赋予期望的预载荷。作为示例,可响应于力的施加而发生一个或多个间隙的闭合(例如,内座圈1642和1662之间的间隙)。在柔性壳1900被轴向地压缩的情况下,中心部分1920的切口1925可以将轴向向外定向的力(例如,预载荷)施加到压缩机侧轴承组件1640的滚动元件和涡轮机侧轴承组件1660的滚动元件。
[0107]
如图17的示例中所示,轴承筒组件1500可以经由其相对端(例如,左侧和右侧)轴向地定位,这可以提供一定量的轴向游隙以允许热膨胀,热膨胀也会影响总的转子游隙。作为示例,间隙(见例如δz)可足以提供轴承筒组件1500的径向移动,例如,如由壳体1710中的润滑剂膜支撑。
[0108]
在图17的示例中,润滑剂井1991和1993可以形成有足以用于承载(多个)力的目的的径向厚度,例如,使得柔性壳1900的变形不会发生在润滑剂井1991和1993处,而是响应于所施加的力(例如,经由预加载、推力等中的一者或多者)经由柔性壳1900的中心部分1920的切口1925发生类似弹簧的缩短。
[0109]
图18a和图18b示出了轴承筒组件1500的一部分的截面图,其中内座圈1662可以经历推力(f
t
),该推力可以经由包含在保持架1663中的滚动元件1664传递到柔性壳1900,该柔性壳充当外座圈(例如,整体外座圈)。如图18a中所示,可以通过可超过推力(f
t
)的预载荷力(f
pl
)来满足推力(f
t
)。如图18b中所示,在一些情况下(例如,取决于应用、设计、操作条件等),推力(f
t
)可超过预载荷力(f
pl
),使得由于柔性壳1900中的切口1925,可能发生轴向缩短。
[0110]
在图18a和图18b的示例中,示出了切口1925之一连同轴向尺寸z
co
。如图18a和图18b中所示,在推力(f
t
)增加的情况下,轴向尺寸z
co
可以减小,其中其可以通过切口1925的相对两侧的接触(例如,沿着弧形槽等)来限制。以这种方式,在切口1925的相对两侧之间发生接触的情况下,柔性壳1900的柔韧性可以大大降低,使得不发生柔性壳1900的进一步缩短。因此,通过对切口1925的形状、大小、取向和数量的适当设计,可以限制柔性壳1900的柔韧性,这可以提供轴(例如,旋转组件)的有限的轴向移动。轴(例如,旋转组件)的有限的轴向移动可以帮助维持例如在涡轮机叶轮和涡轮机叶轮护罩之间和/或压缩机叶轮和压缩机叶轮护罩之间的间隙,使得叶轮和叶轮护罩之间不发生接触;注意,这种接触有导致叶轮灾难性失效的潜在性。作为示例,柔性壳1900可以被设计成提供可大于推力的预载荷。在这种示例中,柔性壳1900可能不经历轴向缩短。
[0111]
如所解释的,可以在bca 1500的板和肩部之间提供一定量的轴向间隙(见例如图17的δz),这可提供热膨胀和径向移动。出于降低叶轮和叶轮护罩之间的接触风险的目的,可将这种轴向间隙与柔性壳1900可能发生的缩短程度结合起来考虑。这种方法也可考虑关
于预期的最大推力的预载荷。
[0112]
作为示例,由于切口所致的总的可用轴向压缩(例如,缩短)可小于约2mm、小于约1mm等。例如,考虑一系列的切口,其中每个切口可小于约0.5mm且大于约0.05mm。作为示例,一定量的润滑剂可经由一个或多个切口流动。作为示例,可使用钻孔工具钻出孔并使用切割工具切割出狭缝来将切口机加工到整体外座圈中,其中,例如,这些狭缝可以在两个或更多个孔之间延伸等。作为示例,切口可轴向地成系列定位。例如,考虑一系列的至少三组(例如,三组、四组、五组等),这可以提供类似弹簧的作用。在图15的示例中,示出了一系列的四组,其中每组可包括若干个切口(例如,两个、三个、四个、五个等)。作为示例,一系列的切口可被构造成将期望量的可弯曲性提供给柔性壳,其中,例如,一系列中的数量增加的组可提供增加的可弯曲性;注意,柔性壳可被构造成用于实现最大的可弯曲性,如可部分地经由柔性壳的外表面和壳体的孔表面之间的润滑剂膜间隙所确定的。
[0113]
作为示例,一种方法可以涉及:在将板固定到壳体的压缩机侧之前对轴承筒组件进行预加载,其中固定该板在轴承筒组件的柔性壳和该板(例如,和肩部等)之间提供了期望的轴向间隙。作为示例,一种方法可包括:将板固定到壳体的压缩机侧以接触和/或压缩轴承筒的柔性壳,且然后施加压缩柔性壳的载荷,以缓解由该板施加的载荷。例如,考虑经由闭合间隙和/或压缩沿着轴布置的一个或多个部件来缩短柔性壳,使得关于柔性壳和轴向定位部件(例如,板和肩部等)形成轴向间隙。
[0114]
作为示例,柔性筒组件(见例如bca 500和1500)可以包括:柔性壳(见例如柔性壳900和1900),其包括设置在压缩机侧部分(见例如压缩机侧部分940和1940)和涡轮机侧部分(见例如涡轮机侧部分960和1960)之间的柔性部分(见例如柔性部分920和1920),其中该柔性部分包括沿着柔性部分的至少一部分轴向地设置的一系列弧形切口(见例如切口925和1925);压缩机侧轴承组件(见例如压缩机侧轴承组件940和1940);以及涡轮机侧轴承组件(见例如涡轮机侧轴承组件960和1960)。
[0115]
作为示例,柔性筒组件可以包括:柔性壳,其包括设置在压缩机侧部分和涡轮机侧部分之间的柔性部分,其中该柔性部分包括沿着柔性部分的至少一部分轴向地设置的一系列弧形切口;压缩机侧轴承组件;以及涡轮机侧轴承组件。在这种示例中,轴承组件中的一个或多个可以包括一个或多个外座圈,和/或柔性壳可以充当一个或多个外座圈(例如,经由可以形成为柔性壳的内表面的一个或多个内表面座圈)。
[0116]
作为示例,柔性部分可以具有轴向长度,该轴向长度超过压缩机侧部分和涡轮机侧部分中的至少一者的轴向长度。作为示例,涡轮机侧部分可以包括外直径,该外直径可以小于压缩机侧部分的外直径。作为示例,柔性部分的外直径大于涡轮机侧部分的外直径。
[0117]
作为示例,柔性壳的压缩机侧部分可以包括挤压膜阻尼器外表面,和/或柔性壳的涡轮机侧部分可以包括挤压膜阻尼器外表面。
[0118]
作为示例,柔性筒组件可以包括至少一个间隔件,所述至少一个间隔件包括至少一个润滑剂喷口。
[0119]
作为示例,柔性筒组件可以包括沿着柔性壳的柔性部分的至少一部分轴向地设置的一系列弧形切口,其中轴向系列包括至少三个弧形切口、或例如至少四个弧形切口、或例如至少五个弧形切口。
[0120]
作为示例,柔性壳的柔性部分可以包括传感器开口,该传感器开口可以接收传感
器的至少一部分和/或允许进行感测(例如,考虑对轴旋转速度等进行感测)。
[0121]
作为示例,压缩机侧轴承组件可以包括至少一个滚动元件轴承组件。例如,考虑包括两个滚动元件轴承组件的压缩机侧轴承组件。
[0122]
作为示例,柔性壳可以包括边沿。例如,考虑设置在柔性壳的压缩机侧端处的边沿。在这种示例中,边沿可包括凹口,该凹口可以是防旋转机构的一部分(例如,接收延伸部或其他部件的防旋转凹口)。
[0123]
作为示例,柔性壳的压缩机侧部分可以包括轴向地定位压缩机侧轴承组件的内肩部。在这种示例中,内肩部可通过诸如由柔性壳接收的间隔件(例如,接收在凹槽中等)之类的部件而形成。
[0124]
作为示例,间隔件可以包括键,其中柔性壳包括用于经由该键来定位间隔件的键槽。例如,考虑一种布置,其中键和键槽在方位角上将间隔件相对于柔性壳定位。
[0125]
作为示例,涡轮增压器可以包括:压缩机组件;涡轮机组件;轴承壳体;以及柔性筒组件,该柔性筒组件包括:柔性壳,该柔性壳包括设置在压缩机侧部分和涡轮机侧部分之间的柔性部分,其中该柔性部分包括沿着柔性部分的至少一部分轴向地设置的一系列弧形切口;压缩机侧轴承组件;以及涡轮机侧轴承组件。
[0126]
作为示例,柔性筒组件可以包括各种特征中的一个或多个,例如以一个或多个组合。
[0127]
尽管已在附图中图示了并在前面的详细描述中描述了方法、装置、系统、布置等的一些示例,但是将理解,所公开的示例实施例不是限制性的,而是能够进行无数的重新布置、修改和替换。
技术特征:
1.一种柔性筒组件,其包括:柔性壳,其包括设置在压缩机侧部分和涡轮机侧部分之间的柔性部分,其中,所述柔性部分包括沿着所述柔性部分的至少一部分轴向地设置的一系列弧形切口;压缩机侧轴承组件;以及涡轮机侧轴承组件。2.根据权利要求1所述的柔性筒组件,其中,所述柔性部分包括轴向长度,所述轴向长度超过所述压缩机侧部分和所述涡轮机侧部分中的至少一者的轴向长度。3.根据权利要求1所述的柔性筒组件,其中,所述涡轮机侧部分包括外直径,所述外直径小于所述压缩机侧部分的外直径。4.根据权利要求1所述的柔性筒组件,其中,所述柔性部分的外直径大于所述涡轮机侧部分的外直径。5.根据权利要求1所述的柔性筒组件,其中,所述压缩机侧部分包括挤压膜阻尼器外表面。6.根据权利要求1所述的柔性筒组件,其中,所述涡轮机侧部分包括挤压膜阻尼器外表面。7.根据权利要求1所述的柔性筒组件,其包括至少一个间隔件,所述至少一个间隔件包括至少一个润滑剂喷口。8.根据权利要求1所述的柔性筒组件,其中,沿着所述柔性部分的至少一部分轴向地设置的所述一系列弧形切口包括一系列轴向的至少三个弧形切口。9.根据权利要求1所述的柔性筒组件,其中,沿着所述柔性部分的至少一部分轴向地设置的所述一系列弧形切口包括一系列轴向的至少四个弧形切口。10.根据权利要求1所述的柔性筒组件,其中,沿着所述柔性部分的至少一部分轴向地设置的所述一系列弧形切口包括一系列轴向的至少五个弧形切口。11.根据权利要求1所述的柔性筒组件,其中,所述柔性部分包括传感器开口。12.根据权利要求1所述的柔性筒组件,其中,所述压缩机侧轴承组件包括至少一个滚动元件轴承组件。13.根据权利要求1所述的柔性筒组件,其中,所述压缩机侧轴承组件包括两个滚动元件轴承组件。14.根据权利要求1所述的柔性筒组件,其中,所述柔性壳包括边沿。15.根据权利要求14所述的柔性筒组件,其中,所述边沿设置在所述柔性壳的压缩机侧端处。16.根据权利要求1所述的柔性筒组件,其中,所述压缩机侧部分包括轴向地定位所述压缩机侧轴承组件的内肩部。17.根据权利要求1所述的柔性筒组件,其包括间隔件,所述间隔件包括键,其中,所述柔性壳包括用于经由所述键来定位所述间隔件的键槽。18.根据权利要求17所述的柔性筒组件,其中,所述键和所述键槽在方位角上相对于所述柔性壳定位所述间隔件。19.一种涡轮增压器,其包括:压缩机组件;
涡轮机组件;轴承壳体;以及柔性筒组件,所述柔性筒组件包括:柔性壳,所述柔性壳包括设置在压缩机侧部分和涡轮机侧部分之间的柔性部分,其中,所述柔性部分包括沿着所述柔性部分的至少一部分轴向地设置的一系列弧形切口;压缩机侧轴承组件;以及涡轮机侧轴承组件。
技术总结
一种柔性筒组件可包括:柔性壳,其包括设置在压缩机侧部分和涡轮机侧部分之间的柔性部分,其中该柔性部分包括沿着柔性部分的至少一部分轴向地设置的一系列弧形切口;压缩机侧轴承组件;以及涡轮机侧轴承组件。以及涡轮机侧轴承组件。以及涡轮机侧轴承组件。
技术研发人员:J
受保护的技术使用者:盖瑞特动力科技(上海)有限公司
技术研发日:2022.12.29
技术公布日:2023/5/12
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/