基板分析系统、基板分析方法以及存储介质与流程

未命名 07-12 阅读:80 评论:0


1.本公开涉及一种基板分析系统、基板分析方法以及存储介质。


背景技术:

2.在专利文献1中记载了一种基板处理方法,其包括以下工序:生成与构成基板上的层叠膜的各层有关的处理后的基板的摄像图像;以及关于包括层叠膜的最表层在内的多个层分别示出表示基于摄像图像估计出的特征量的信息。
3.现有技术文献
4.专利文献
5.专利文献1:日本特开2021-97218号公报


技术实现要素:

6.发明要解决的问题
7.本公开提供一种能够高效地分析关于基板处理的处理状态的基板分析系统、基板分析方法以及存储介质。
8.用于解决问题的方案
9.本公开的一个方面所涉及的基板分析系统具备:摄像部,其拍摄基板表面;缺陷范围估计部,其基于摄像部的摄像结果来估计在基板表面产生了缺陷的范围即缺陷范围;灰度值获取部,其获取对基板表面照射了光时的缺陷范围中的灰度值;以及缺陷种类判别部,其基于灰度值来判别缺陷范围中的缺陷种类。
10.发明的效果
11.根据本公开,能够提供一种能够高效地分析关于基板处理的处理状态的基板分析系统、基板分析方法以及存储介质。
附图说明
12.图1是例示基板处理系统的概要结构的示意图。
13.图2是说明缺陷范围估计和缺陷种类判别的图。
14.图3是示意性地示出摄像单元的结构的纵剖截面图。
15.图4是示意性地示出摄像单元的结构的横剖截面图。
16.图5是示意性地示出灰度值检测单元的结构的纵剖截面图。
17.图6是示意性地示出灰度值检测单元的结构的横剖截面图。
18.图7是示出每个缺陷种类的灰度值与波长之间的关系的图。
19.图8是示出各波长间的灰度值的变化倾向的一例的图。
20.图9是例示衍射部的硬件结构的示意图。
21.图10是示出基板分析方法的处理过程的流程图。
具体实施方式
22.下面,参照附图来详细地说明实施方式。在说明中,对相同要素或具有相同功能的要素标注相同的附图标记,并省略重复的说明。
23.基板处理系统1是对基板实施感光性覆膜的形成、该感光性覆膜的曝光、以及该感光性覆膜的显影的系统。另外,基板处理系统1实施按照所形成的感光性覆膜的图案去除氧化膜/薄膜的蚀刻、以及蚀刻后的清洗处理。关于作为处理对象的基板,能够列举半导体晶圆、玻璃基板、掩模基板或者fpd(flat panel display:平板显示器)等。基板也包括通过预处理而在半导体晶圆等之上形成有覆膜等的基板。
24.图1是例示基板处理系统1的概要结构的示意图。在图1所示的例子中,基板处理系统1具备分析装置10(基板分析系统)、涂布装置20、显影装置30、曝光装置40、蚀刻装置50以及清洗装置60。这些各装置中的任意两个以上的装置可以由一个装置实现。例如,涂布装置20和显影装置30可以设为一个涂布/显影装置。
25.涂布装置20在基板的表面形成作为感光性覆膜的抗蚀膜。曝光装置40通过液浸曝光等方法进行对抗蚀膜的曝光对象部分照射能量射线的曝光处理。显影装置30在曝光处理后进行抗蚀膜的显影处理。蚀刻装置50进行按照所形成的抗蚀膜的图案去除氧化膜/薄膜的蚀刻处理。
26.清洗装置60对蚀刻处理后的基板进行清洗处理。清洗装置60例如可以包括在对旋转的基板供给sc1来进行清洗之后对基板供给ipa来使基板干燥的装置。另外,清洗装置60例如可以包括在进行对多张基板排列而成的基板组供给磷酸的批量处理之后对基板组供给ipa来使各基板干燥的装置。
27.分析装置10是对通过进行基板处理系统1中包括的各装置中的基板处理所得到的基板的处理状态进行分析的装置。分析装置10估计基板中的缺陷范围,并且根据该缺陷范围中的灰度值来判别该缺陷范围中的缺陷种类。另外,分析装置10可以基于判别出的缺陷种类来估计前工序中的缺陷产生原因。
28.图2是说明缺陷范围估计和缺陷种类判别的图。图2的(a)是说明缺陷范围估计的一例的图,图2的(b)是说明关于图2的(a)所示的缺陷范围的缺陷种类判别的一例的图。在图2的(a)所示的例子中,根据拍摄基板w所得到的摄像结果,确定出基板w中的被估计为缺陷范围的区域d1~d3。而且,如图2的(b)所示,关于各区域d1~d3,通过获取灰度值而确定出区域d1的缺陷是与显影液有关的缺陷,区域d2的缺陷是与钇有关的缺陷,区域d3的缺陷是与抗蚀剂有关的缺陷。通过这样来判别缺陷类别,由此能够估计缺陷的原因(产生了缺陷的工序、装置/模块)(在后文中叙述详情)。
29.返回图1,分析装置10具有摄像单元11、灰度值检测单元12以及解析部13。摄像单元11与解析部13设为能够相互通信。另外,灰度值检测单元12与解析部13设为能够相互通信。此外,图1所示的分析装置10的结构是一例,分析装置10所具备的各结构的配置并不限定于图1所示的例子。也就是说,摄像单元11、构成解析部13的各个功能部也可以单独地搭载于其它装置,并且在该各个功能部之间进行所需的信息的发送和接收。此处所说的构成解析部13的各个功能部是指缺陷范围估计部131、灰度值获取部132、缺陷种类判别部133、原因估计部134。例如,摄像单元11、缺陷范围估计部131可以搭载于涂布装置20等其它装置。另外,解析部13的缺陷种类判别部133和原因估计部134可以搭载于其它服务器(未图
示)。另外,分析装置10本身也可以搭载于例如涂布装置20等其它装置。
30.摄像单元11根据解析部13的控制进行基板w的表面的摄像,并将摄像结果发送到解析部13。通过解析部13基于该摄像结果来估计基板w的缺陷范围(在后文中叙述详情)。
31.图3是示意性地示出摄像单元11的结构的纵剖截面图。图4是示意性地示出摄像单元11的结构的横剖截面图。如图3和图4所示,摄像单元11具有壳体110。在壳体110内设置有用于搭载基板w的载置台115。该载置台115通过马达等旋转驱动部116而自由地旋转/停止。在壳体110的底面设置有从壳体110的一端侧(图4中的x方向负方向侧)延伸到另一端侧(图4中的x方向正方向侧)的导轨113。载置台115和旋转驱动部116设置在导轨113上,能够通过驱动装置117沿导轨113移动。
32.在壳体110内的另一端侧(图4中的x方向正方向侧)的侧面设置有摄像机111。作为摄像机111,例如使用行传感器摄像机。在壳体110的上部中央附近设置有半透半反镜114。半透半反镜114以从镜面朝向铅垂下方的状态朝向摄像机111的方向向上方倾斜45度的状态设置于与摄像机111相向的位置。在半透半反镜114的上方设置有光源112。半透半反镜114和光源112固定于壳体110内部的上表面。来自光源112的照明通过半透半反镜114并朝向下方照射。而且,被处于光源112的下方的物体(在此为基板w)反射的光被半透半反镜114进一步反射,并被取入到摄像机111。通过这样,摄像机111能够拍摄基板w的表面。即,在摄像单元11中,通过使基板w沿导轨113在一个方向(图4中的x方向)上移动,来利用摄像机111以扫描基板w的表面的方式进行拍摄。
33.灰度值检测单元12是针对由解析部13基于摄像单元11的摄像结果估计出的缺陷范围(在后文中叙述详情)检测照射了光时的灰度值的结构。灰度值检测单元12构成为包括用于检测短波红外光的swir(short wavelength infra-red:短波红外)传感器121。短波红外光例如是700nm~2500nm的波段的光,也可以是900nm~1700nm的波长域的光。swir传感器121例如能够区分各种药液(有机药液、无机药液)、金属等的灰度值地进行检测。灰度值检测单元12根据解析部13的控制来进行灰度值的检测,并将检测结果发送到解析部13。通过解析部13基于该检测结果来进行基板w的缺陷范围中的缺陷种类的判别(在后文中叙述详情)。
34.图5是示意性地示出灰度值检测单元12的结构的纵剖截面图。图6是示意性地示出灰度值检测单元12的结构的横剖截面图。如图5和图6所示,灰度值检测单元12具有壳体120。在壳体120内设置有用于搭载基板w的载置台125。该载置台125通过马达等旋转驱动部126而自由地旋转/停止。在壳体120的底面设置有从壳体120的一端侧(图6中的x方向负方向侧)延伸到另一端侧(图6中的x方向正方向侧)的导轨123。载置台125和旋转驱动部126设置在导轨123上,能够通过驱动装置127沿导轨123移动。
35.在壳体120内的另一端侧(图6中的x方向正方向侧)的侧面设置有swir传感器121。此外,swir传感器121可以是swir摄像机。在壳体120的上部中央附近设置有半透半反镜124。半透半反镜124以从镜面朝向铅垂下方的状态朝向swir传感器121的方向向上方倾斜45度的状态设置于与swir传感器121相向的位置。在半透半反镜124的上方设置有光源122。光源122是照射至少包含短波红外光的波长范围的光的光源,例如是白色光源。光源122照射多个波段的光,至少照射例如1000nm、1200nm、1400nm的波段的光。半透半反镜124和光源122固定于壳体120内部的上表面。来自光源122的光通过半透半反镜124并朝向下方照射。
来自光源122的光例如照射到基板w的整个表面。而且,在基板w的表面反射后的光被半透半反镜124进一步反射,并通过swir传感器121被检测到。通过这样,swir传感器121能够检测来自基板w的整个表面的光,并检测基板w的表面的各区域的、针对多个波长的各波长的灰度值(灰度值分布)。此外,swir传感器121可以仅检测基板w的缺陷范围的灰度值。具体地说,可以通过驱动装置127和旋转驱动部126来调整基板w的位置及朝向,由此swir传感器121仅检测基板w的缺陷范围的灰度值。
36.此外,在上文中设为摄像单元11和灰度值检测单元12是互不相同的结构来进行了说明,但在能够通过一个摄像单元的摄像来进行缺陷范围的确定和灰度值的获取的情况下,也可以仅设置有一个摄像单元。
37.返回图1,解析部13具备缺陷范围估计部131、灰度值获取部132、缺陷种类判别部133、原因估计部134以及存储部135。
38.缺陷范围估计部131基于摄像单元11的摄像结果(摄像图像)来估计在基板w的表面产生了缺陷的范围即缺陷范围。缺陷范围估计部131根据摄像图像所示的基板w的表面的各区域的像素值等,来估计基板w的表面的缺陷范围。
39.灰度值获取部132获取对基板w的表面照射了光时的缺陷范围中的灰度值。具体地说,灰度值获取部132可以从灰度值检测单元12获取基板w的表面的各区域的灰度值,并从中确定(获取)上述缺陷范围的灰度值。灰度值获取部132可以获取缺陷范围中的与多个波段分别对应的灰度值。此处的多个波段例如是三个以上的波段,例如是1000nm、1200nm、1400nm的波段。
40.缺陷种类判别部133基于灰度值来判别缺陷范围中的缺陷种类。在一个缺陷范围中存在灰度值的分布互不相同的多个区域的情况下,缺陷种类判别部133可以针对多个区域中的每个区域判别缺陷种类。即,缺陷种类判别部133不仅针对一个缺陷范围判别一个缺陷种类,在一个缺陷范围中存在灰度值的分布互不相同的多个区域的情况下,还可以判别各区域的缺陷种类。
41.缺陷种类判别部133可以基于与多个波长分别对应的灰度值来判别缺陷种类。缺陷种类判别部133可以基于与多个波长分别对应的灰度值之间的变化倾向来判别缺陷种类。参照图7和图8来详细地说明缺陷种类的判别。
42.图7是示出每个缺陷种类的灰度值与波长之间的关系的图。在图7中,横轴表示波长,纵轴表示灰度值。在图7中,针对由于存在于基板的表面而可能成为缺陷的每种药品(抗蚀剂、显影液等)示出了针对所照射的光的每个波长检测到的灰度值。如图7所示,由于针对各波长的灰度值分布按缺陷种类(由于存在于基板的表面而可能成为缺陷的各药品)而不同,因此能够根据灰度值来判别缺陷种类。
43.在此,如图7所示,仅根据一个波长的灰度值,有时无法唯一地确定缺陷种类。因此,优选基于与多个波长分别对应的灰度值来判别缺陷种类。
44.另外,即使在考虑了与多个波长分别对应的灰度值的情况下,也存在灰度值分布类似而无法唯一地确定缺陷种类的情况。在该情况下,也能够通过考虑与多个波长分别对应的灰度值之间的变化倾向来判别缺陷种类。图8是示出各波长间的灰度值的变化倾向的一例的图。在图8的(a)所示的缺陷分类a中,随着从最短波长侧的灰度值去向相邻的波段的灰度值,灰度值下降,随着去向最长波长侧的灰度值,灰度值上升。另一方面,在图8的(b)所
示的缺陷分类b中,随着从最短波长侧的灰度值去向相邻的波段的灰度值,灰度值上升,随着去向最长波长侧的灰度值,灰度值上升。像这样,在缺陷分类a和缺陷分类b中,与多个波长分别对应的灰度值之间的变化倾向互不相同,因此通过考虑这样的变化倾向,能够唯一地确定缺陷种类。此外,变化倾向例如是灰度值的上下变动、上下变动的斜率的程度等。如上述那样,当多个波长为三个以上的波长时,波长的相邻区间为两个以上,能够更适当地确定变化倾向。
45.缺陷种类判别部133例如可以将表示如图7所示那样的每个缺陷种类的灰度值与波长之间的关系的外部分析器的数据作为训练数据,并存储每个波长的灰度值的数据。而且,缺陷种类判别部133可以生成用于根据多个波长的灰度值的数据来判别缺陷种类的模型(回归模型、机器学习模型等)。在该情况下,例如每个波长的灰度值的数据可以通过灰度值
×
波长1000nm+灰度值
×
波长1200nm+灰度值
×
波长1400nm等式子来获取。缺陷种类判别部133将每个波长的灰度值的数据和根据各数据生成的模型保存于存储部135。缺陷种类判别部133基于存储部135中保存的模型,根据多个波长的灰度值的数据来判别缺陷种类。
46.返回图1,原因估计部134基于由缺陷种类判别部133判别出的缺陷种类,来估计前工序中的缺陷产生原因。此处的前工序是指例如在通过分析装置10来分析基板的处理状态的时间点之前实施的工序,例如是通过涂布装置20、显影装置30、曝光装置40、蚀刻装置50或者清洗装置60实施的工序。估计缺陷产生原因是指估计产生了缺陷的工序(具体的处理)、或者估计实施该工序的装置/模块等。
47.原因估计部134可以基于由缺陷种类判别部133判别出的缺陷种类、缺陷形状/缺陷位置等缺陷形态、以及前工序的装置的信息(包括顾客的主机信息等),来估计缺陷产生原因。例如,设为由缺陷种类判别部133判别为缺陷种类是由于ipa产生的缺陷。在该情况下,设为缺陷的形状是存在于基板的径向局部区域的缺陷的形状,例如基板上的缺陷沿周向画线那样的形状或呈圆弧的形状等。在该情况下,原因估计部134可以将旋转处理时的液体残留设为缺陷产生原因,并且估计为伴随旋转进行的清洗处理是产生了缺陷的工序(具体的处理)。另外,例如设为缺陷的形状是具有从基板的一端侧朝向相反侧那样的方向性的形状。在该情况下,原因估计部134可以估计为磷酸批量处理后的进行ipa供给的干燥处理是产生缺陷的工序(具体的处理)。
48.图9是例示解析部13的硬件结构的框图。解析部13由一个或多个控制用计算机构成。如图9所示,解析部13具有电路190。电路190包括至少一个处理器191、存储器192、存储装置193、输入输出端口194、输入设备195以及显示设备196。
49.存储装置193例如具有硬盘等可由计算机读取的存储介质。存储装置193存储有用于使解析部13执行分析装置10的信息处理方法的程序。例如,存储装置193存储有用于使解析部13构成上述的各功能块的程序。
50.存储器192暂时地存储从存储装置193的存储介质载入的程序和处理器191的运算结果。处理器191通过与存储器192协作地执行上述程序,来构成上述的各功能模块。输入输出端口194根据来自处理器191的指令,来与摄像单元11及灰度值检测单元12之间进行电信号的输入和输出。
51.输入设备195和显示设备196作为解析部13的用户接口发挥功能。输入设备195例如是键盘等,用于获取用户的输入信息。显示设备196例如包括液晶监视器等,用于对用户
显示信息。显示设备196例如用于显示上述原因信息。输入设备195和显示设备196可以一体化为所谓的触摸面板。
52.接着,参照图10对分析装置10实施的基板分析方法的处理过程进行说明。图10是示出基板分析方法的处理过程的流程图。
53.如图10所示,首先,拍摄基板表面(步骤s1,摄像工序)。接着,基于摄像工序的摄像结果来估计在基板表面产生了缺陷的范围即缺陷范围(步骤s2,缺陷范围估计工序)。
54.接下来,获取对基板表面照射了光时的缺陷范围中的灰度值(步骤s3,灰度值获取工序)。然后,基于灰度值来判别缺陷范围中的缺陷种类(步骤s4,缺陷种类判别工序)。
55.最后,基于在缺陷种类判别工序中判别出的缺陷种类,来估计前工序中的缺陷产生原因(步骤s5,原因估计工序)。
56.接着,对本实施方式所涉及的分析装置10的作用效果进行说明。
57.分析装置10具备:摄像单元11,其拍摄基板表面;以及缺陷范围估计部131,其基于摄像单元11的摄像结果来估计在基板表面产生了缺陷的范围即缺陷范围。并且,分析装置10具备:灰度值获取部132,其获取对基板表面照射了光时的缺陷范围中的灰度值;以及缺陷种类判别部133,其基于灰度值来判别缺陷范围中的缺陷种类。
58.在本实施方式所涉及的分析装置10中,首先,基于基板表面的摄像结果来估计基板表面中的缺陷范围,接着,基于对基板表面照射了光时的缺陷范围的灰度值来判别缺陷范围中的缺陷种类。由于在灰度值与缺陷种类之间存在相关性,因此能够基于灰度值来高精度地判别缺陷种类,从而能够适当地分析关于基板处理的处理状态。而且,在根据摄像结果估计出大致的缺陷范围的基础上,根据该摄像范围的灰度值来判别缺陷种类,由此能够限定基于灰度值进行缺陷种类判别的范围,并且能够高效地进行缺陷种类的判别。另外,与如像以往那样在基板处理工序中进行基板的抽取检查那样的针对一张基板需要时间的检查机相比,能够高效地进行缺陷种类的判别。如以上那样,根据本实施方式所涉及的分析装置10,能够高效地分析关于基板处理的处理状态。
59.灰度值获取部132可以获取缺陷范围中的与多个波长分别对应的灰度值,缺陷种类判别部133可以基于与多个波长分别对应的灰度值来判别缺陷种类。灰度值根据每个波长而不同,通过根据与多个波长分别对应的灰度值来判别缺陷种类,能够更高精度地判别缺陷种类。
60.在一个缺陷范围中存在灰度值的分布互不相同的多个区域的情况下,缺陷种类判别部133可以针对多个区域中的每个区域判别缺陷种类。由此,即使在根据摄像结果估计出的某个缺陷范围中存在灰度值的分布互不相同(即,缺陷种类互不相同)的多个区域的情况下,也能够适当地判别与各个区域有关的缺陷种类。
61.缺陷种类判别部133可以基于与多个波长分别对应的灰度值之间的变化倾向来判别缺陷种类。像这样,不是仅根据灰度值的绝对值来判别缺陷种类,而是能够通过考虑灰度值间的变化倾向来精度更高地判别缺陷种类。另外,例如即使在绝对值由于噪声的影响而发生了变动的情况下,如果基于灰度值间的变化倾向进行判别,则也能够准确地判别缺陷种类。
62.分析装置10还可以具备原因估计部134,所述原因估计部134基于由缺陷种类判别部133判别出的缺陷种类来估计前工序中的缺陷产生原因。根据这样的结构,通过确定缺陷
产生原因(产生了缺陷的工序、装置、模块等)并改善该缺陷产生原因,能够抑制缺陷的产生。
63.附图标记说明
64.10:分析装置(基板分析系统);11:摄像单元(摄像部);131:缺陷范围估计部;132:灰度值获取部;133:缺陷种类判别部;134:原因估计部。

技术特征:
1.一种基板分析系统,具备:摄像部,其拍摄基板表面;缺陷范围估计部,其基于所述摄像部的摄像结果来估计在所述基板表面产生了缺陷的范围即缺陷范围;灰度值获取部,其获取对所述基板表面照射了光时的所述缺陷范围中的灰度值;以及缺陷种类判别部,其基于所述灰度值来判别所述缺陷范围中的缺陷种类。2.根据权利要求1所述的基板分析系统,其特征在于,所述灰度值获取部获取所述缺陷范围中的与多个波长分别对应的所述灰度值,所述缺陷种类判别部基于与多个波长分别对应的所述灰度值来判别所述缺陷种类。3.根据权利要求1或2所述的基板分析系统,其特征在于,在一个所述缺陷范围中存在所述灰度值的分布互不相同的多个区域的情况下,所述缺陷种类判别部针对所述多个区域中的每个区域判别所述缺陷种类。4.根据权利要求2所述的基板分析系统,其特征在于,所述缺陷种类判别部基于与多个波长分别对应的所述灰度值之间的变化倾向来判别所述缺陷种类。5.根据权利要求1或2所述的基板分析系统,其特征在于,还具备原因估计部,所述原因估计部基于由所述缺陷种类判别部判别出的所述缺陷种类来估计前工序中的缺陷产生原因。6.一种基板分析方法,包括以下工序:摄像工序,拍摄基板表面;缺陷范围估计工序,基于所述摄像工序中的摄像结果来估计在所述基板表面产生了缺陷的范围即缺陷范围;灰度值获取工序,获取对所述基板表面照射了光时的所述缺陷范围中的灰度值;以及缺陷种类判别工序,基于所述灰度值来判别所述缺陷范围中的缺陷种类。7.根据权利要求6所述的基板分析方法,其特征在于,在所述灰度值获取工序中,获取所述缺陷范围中的与多个波长分别对应的所述灰度值,在所述缺陷种类判别工序中,基于与多个波长分别对应的所述灰度值来判别所述缺陷种类。8.根据权利要求6或7所述的基板分析方法,其特征在于,在所述缺陷种类判别工序中,在一个所述缺陷范围中存在所述灰度值的分布互不相同的多个区域的情况下,针对所述多个区域中的每个区域判别所述缺陷种类。9.根据权利要求7所述的基板分析方法,其特征在于,在所述缺陷种类判别工序中,基于与多个波长分别对应的所述灰度值之间的变化倾向来判别所述缺陷种类。10.根据权利要求6或7所述的基板分析方法,其特征在于,还包括原因估计工序,在所述原因估计工序中,基于在所述缺陷种类判别工序中判别出的所述缺陷种类来估计前工序中的缺陷产生原因。11.一种计算机可读取存储介质,存储有用于使装置执行根据权利要求6至10中的任一
项所述的基板分析方法的程序。

技术总结
本发明提供一种基板分析系统、基板分析方法以及存储介质,能够高效地分析关于基板处理的处理状态。分析装置(10)具备:摄像单元(11),其拍摄基板表面;缺陷范围估计部(131),其基于摄像单元(11)的摄像结果来估计在基板表面产生了缺陷的范围即缺陷范围;灰度值获取部(132),其获取对基板表面照射了光时的缺陷范围中的灰度值;以及缺陷种类判别部(133),其基于灰度值来判别缺陷范围中的缺陷种类。于灰度值来判别缺陷范围中的缺陷种类。于灰度值来判别缺陷范围中的缺陷种类。


技术研发人员:榎本正志
受保护的技术使用者:东京毅力科创株式会社
技术研发日:2022.12.28
技术公布日:2023/7/11
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

飞机超市 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

相关推荐