一种基于自适应收敛的动态组网雷达天线配置方法与流程

未命名 07-15 阅读:118 评论:0


1.本发明涉及雷达天线配置技术领域,特别是一种基于自适应收敛的动态组网雷达天线配置方法。


背景技术:

2.随着电子战的发展,多功能组网雷达的出现,解决了传统单站雷达亟待解决的无法完成多种任务、自身生存等问题。组网雷达是最有希望解决反隐身、抗干扰的途径之一。
3.然而,组网雷达的天线分布位置极大影响着其作战性能,根据动态战场情况合理的优化天线的位置能够使得组网雷达的作战性能大幅度提升。近年来研究发现,一种基于状态预测和粒子群优化算法的动态粒子群优化算法可以较好的解决在实际动态战场中,作战环境有规律变化的时的动态优化组网雷达优化布站问题。但是,之前的研究者未对其算法迭代的收敛条件进行针对性的分析,只是根据经验值设置了一个固定的迭代次数。战场环境千变万化,若预先设置的迭代次数过低,将使得算法无法获得较好的优化结果;相反,若设置得太高,会使得算法在已经获得了较好的运算结果后继续进行无效的迭代,浪费计算资源。如果能够发现一种基于算法自适应的判断收敛的方法,就能在算法迭代达到较优化的时候停止迭代并输出结果,可以实现计算资源的合理分配。


技术实现要素:

4.鉴于此,本发明提供一种基于自适应收敛的动态组网雷达天线配置方法,有效避免不必要的计算资源浪费,获得较好的雷达站点位置优化配置结果。
5.本发明公开了一种基于自适应收敛的动态组网雷达天线配置方法,其包括以下步骤:
6.步骤1、采用基于卡尔曼滤波的预测模型,根据t1之前的多个时刻的雷达天线优化配置方案,对t1时刻的最优解进行预测;
7.步骤2、以步骤1中生成的预测值作为算法的初值,开始进行粒子群优化迭代计算,得到每一步迭代所生成的非劣解集及其对应的pareto front;
8.步骤3、计算动态粒子群优化算法相邻两步迭代计算所生成非劣解集所对应的pareto front间隔距离;
9.步骤4、用卡尔曼滤波器对当前迭代生成的非劣解集的pareto front与未迭代寻优时获得的随机粒子群的pareto front的间隔距离进行平滑处理;
10.步骤5、以修正后的间隔距离作为依据判断是否满足收敛条件,若满足,则停止迭代计算,将此次迭代产生的pareto front输出,以此作为算法最终输出结果,以实现动态组网雷达天线配置。
11.进一步地,所述步骤1包括:
12.步骤1.1、针对t1之前的若干时刻的环境,以传统粒子群优化算法对每个时刻的最优配置方案进行求解;
13.步骤1.2、利用步骤1.1中的最优配置方案,以基于卡尔曼滤波的预测模型对t1时刻的天线配置方案进行预测。
14.进一步地,所述步骤3包括:
15.步骤3.1、首先对动态组网雷达天线配置问题的第t时刻子问题的第l2次迭代后生成的第i个非劣解其所对应的联合目标函数计算第l1次迭代后第r个非劣解所对应的联合目标函数与的欧氏距离
[0016][0017]
步骤3.2、采用步骤3.1中的公式,分别计算与第l2次迭代后生成的所有非劣解之间的欧氏距离,并从中选出距离的最小值作为第l1次迭代后第r个非劣解相对于第l2次迭代后产生的非劣解集的距离
[0018][0019]
若外部档案集λr是空集,则令
[0020]
步骤3.3、在计算出第l1次迭代后所产生的非劣解集中所有非劣解相对于第l2次迭代后产生的非劣解集的距离后,将所有距离的平均值作为两次迭代所生成非劣解集所对应pareto front的间隔距离:
[0021][0022]
其中,r'为所有非劣解集集λr的大小。
[0023]
进一步地,所述步骤4包括:
[0024]
步骤4.1、计算第l2次迭代后的预测误差自相关矩阵
[0025][0026]
其中,a为状态转移矩阵,q为过程噪声,为第l1次迭代得到的修正后的误差互相关阵;
[0027]
步骤4.2、计算第l2次迭代后得到的卡尔曼增益矩阵:
[0028][0029]
其中,h为观测矩阵,r为观测噪声矩阵;
[0030]
步骤4.3、对第l2次迭代所生成的非劣解集所对应的pareto front与未迭代寻优时获得的pareto front的间隔距离进行修正:
[0031][0032]
其中,为状态矩阵的预测向量,状态向量包括第l2次迭代输出的pf与初始粒子所对应的pf的间距以及其变化趋势即第l2次迭代输出的pf与第l1次迭代输出的pf的间距:
[0033][0034]
其中,为直接计算的相邻两次迭代所生成的非劣解集所对应的pareto front的间隔距离,l2=l1+1;dis(0,l2,t)为直接计算的本次迭代所生成的非劣解集所对应的pareto front与未迭代寻优时获得的pareto front的间隔距离;
[0035]
步骤4.4、对预测误差自相关矩阵进行修正:
[0036][0037]
其中,e表示单位矩阵。
[0038]
进一步地,在所述步骤4和所述步骤5中:
[0039]
计算每次算法迭代所生成的非劣解集所对应的pareto front与随机初始粒子的间隔距离,并以此为依据进行自适应的收敛判断并停止迭代,具体的操作方法为:
[0040]
第l-1次迭代后所得到状态向量为:
[0041][0042]
其中,dis(0,l-1,t)为第l-1次迭代所生成的非劣解集所对应的pareto front与随机初始粒子的间隔距离,dis
l-2,l-1,t
为第l-1次迭代所生成的非劣解集所对应的pareto front与第l-2次迭代所生成的非劣解集所对应的pareto front的间隔距离,则对第l次迭代后所得到状态向量进行预测为:
[0043][0044]
其中,表示状态转移矩阵,且在步骤4.3对状态向量进行修正的时候,由于dis(0,l-1,t)、dis
l-1,l,t
都是可以直接获得的,所以其观测矩阵为:
[0045]
进一步地,所述步骤5包括:
[0046]
步骤5.1、当后一次迭代后所得到的值与前一次迭代后所得到的距离之比小于预设门限;
[0047]
步骤5.2、算法迭代过程中,连续两次同时满足步骤5.1中的条件则自适应地判断为已经满足算法收敛条件,停止迭代,将此次迭代产生的pareto front输出,作为算法最终
获得的最优解集。
[0048]
进一步地,还包括:
[0049]
步骤6:用步骤5求得的最优解集中的站点配置方案,结合卡尔曼滤波,对预测模型进行修正。
[0050]
进一步地,所述步骤6包括:
[0051]
步骤6.1、根据实际情况从该最优解集中选择出多个粒子;
[0052]
步骤6.2、计算第t时刻预测误差互相关矩阵为p
t

[0053]
p
t-=ap
t-1at
+q
[0054]
a即为状态转移矩阵,q为过程噪声,为第t-1时刻修正后预测误差互相关矩阵;
[0055]
步骤6.3、计算卡尔曼增益矩阵为k
t

[0056]kt
=p
t-h
t
(hp
t-h
t
+r)-1
[0057]
其中h为观测矩阵,r为观测噪声矩阵;
[0058]
步骤6.4、结合步骤6.1选择出多个粒子对t时刻的站点配置方案进行修正:
[0059][0060]
式中,为时刻t的预测状态向量,表示第t时刻修正过的状态向量,z
t
表示观测值;
[0061]
步骤6.5、对状态误差互相关矩阵的修正为:
[0062]
p
t
=(e-k
t
h)p
t-[0063]
其中,e表示单位矩阵。
[0064]
由于采用了上述技术方案,本发明具有如下的优点:本发明可以在动态的战场环境下,利用动态群智能算法对雷达站点进行优化配置时,根据多次算法迭代结果进行自适应的收敛判断并停止算法迭代,可以有效节省不必要的计算资源浪费,获得较好的雷达站点位置优化配置结果。
附图说明
[0065]
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
[0066]
图1为本发明实施例的仿真场景示意图;
[0067]
图2为本发明实施例的迭代寻优后输出的pf与初始粒子所对应的pf的间距示意图;
[0068]
图3为本发明实施例的一种基于自适应收敛的动态组网雷达天线配置方法的流程示意图;
[0069]
图4为本发明实施例的间隔距离计算流程示意图。
具体实施方式
[0070]
结合附图和实施例对本发明作进一步说明,显然,所描述的实施例仅是本发明实施例一部分实施例,而不是全部的实施例。本领域普通技术人员所获得的所有其他实施例,
都应当属于本发明实施例保护的范围。
[0071]
参见图3和图4,本发明提供了一种基于自适应收敛的动态组网雷达天线配置方法的实施例,其包括以下步骤:
[0072]
s1、采用基于卡尔曼滤波的预测模型,根据t1之前的多个时刻的雷达天线优化配置方案,对t1时刻的最优解进行预测;
[0073]
s1.1、针对t1之前的若干时刻的环境,以传统粒子群优化算法对每个时刻的最优配置方案进行求解;
[0074]
s1.2、利用s1.1中的最优配置方案,以基于卡尔曼滤波的预测模型对t1时刻的天线配置方案进行预测;
[0075]
s2、以s1.2中生成的预测值作为算法的初值,开始进行粒子群优化迭代计算,得到每一步迭代所生成的非劣解集及其对应的pareto front;
[0076]
s3、计算动态粒子群优化算法相邻两步迭代计算所生成非劣解集所对应的pareto front间隔距离。计算两次迭代所生成的非劣解集的步骤为:
[0077]
s3.1、首先对动态组网雷达天线配置问题的第t时刻子问题的第l2次迭代后生成的第i个非劣解其所对应的联合目标函数计算其与支配他们的所对应的联合目标函数的欧氏距离
[0078][0079]
s3.2、对他们进行排序,从中选出距离的最小值作为第l1次迭代后第r个非劣解相对于第l2次迭代后产生的非劣解集的距离
[0080][0081]
若外部档案集λr是空集,则令
[0082]
s3.3、在计算出第l1次迭代后所产生的非劣解集中所有非劣解相对于第l2次迭代后产生的非劣解集的距离后,选择他们的平均值作为两次迭代所生成非劣解集所对应pareto front的间隔距离:
[0083][0084]
其中,r'为所有非劣解集集λr的大小。
[0085]
s4、用卡尔曼滤波器对该次迭代生成的非劣解集的pareto front与未迭代寻优时获得的随机粒子群的pareto front的间隔距离进行平滑处理,
[0086]
s4.1、计算第l2次迭代后的预测误差自相关矩阵
[0087][0088]
其中,a为状态转移矩阵,q为过程噪声,为第l1次迭代得到的修正后的误差互相关阵;
[0089]
s4.2、计算第l2次迭代后得到的卡尔曼增益矩阵:
[0090][0091]
其中,h为观测矩阵,r为观测噪声矩阵;
[0092]
s4.3、对本次迭代所生成的非劣解集所对应的pareto front与未迭代寻优时获得的pareto front的间隔距离进行修正:
[0093][0094]
其中,为状态矩阵的预测值,当中的为直接计算的前后两次迭代所生成的非劣解集所对应的pareto front的间隔距离;dis(l0,l2,t)
观测
为直接计算的本次迭代所生成的非劣解集所对应的pareto front与未迭代寻优时获得的pareto front的间隔距离;
[0095]
s4.4、对预测误差自相关矩阵进行修正:
[0096][0097]
其中e表示单位矩阵。
[0098]
s5、以修正后的间隔距离dis(0,l2,t)作为依据判断是否满足以下收敛条件,若满足,则停止迭代计算,以此作为算法最终输出结果;
[0099]
s5.1、当后一次迭代后所得到的值与前一次迭代后所得到的距离之比小于某个门限;
[0100]
s5.2、算法迭代过程中,连续两次同时满足s5.1中的条件则自适应地判断为已经满足算法收敛条件,停止迭代,将此次迭代产生的pareto front输出,作为算法最终获得的最优解集;
[0101]
s6、用s5求得的最优解集中的站点配置方案,结合卡尔曼滤波,对预测模型进行修正;
[0102]
本实施例中,所述s4中,最近一次迭代所得到的非劣解集对应pareto front与未迭代寻优时获得的pareto front的间隔距离(以下简称间隔距离)的状态向量为:则对下一次迭代所得的状态向量进行预测为:
[0103]
[0104]
其中,为第l2次迭代后产生的间隔距离,为状态向量的转移矩阵。
[0105]
本发明可以在使用动态多目标粒子群优化算法解决动态战场环境下的雷达优化布站问题时,根据实际情况,在算法寻优到适当程度时,自适应的停止迭代并输出优化结果。可以更加合理的分配计算资源,避免计算时间和资源的浪费。
[0106]
为了便于理解,本发明给出了一个更为具体的实施例:
[0107]
本发明所采用的技术方案是基于组网雷达,使用基于动态多目标pso算法对动态环境下的雷达站点配置进行有效优化的同时建立pareto front间隔距离与算法迭代次数的关系模型,算法可以根据该模型自适应终止优化计算过程,包括以下步骤:
[0108]
对开始的三个时刻,将它们看做相互独立的,利用传统的pso方法计算出最优站点配置方案。然后根据之前的站点优化配置方案,预测出下一时刻大致的站点优化配置方案,具体操作方法为:
[0109]
第三时刻站点配置方案的状态向量为:
[0110][0111]
其中和分别为前三个时刻的站点最优配置方案的天线位置,和分别为第三时刻的天线移动趋势的速度和加速度。则我们可以对第四时刻的站点配置方案的天线大致位置进行合理的估计:
[0112][0113]
对预测出的第四时刻最优解,对于每一个天线,在该天线的预测位置的周围划定一个方形或圆形邻域,在使用pso算法计算该时刻最优解的时候,将初始粒子群随机初始化于这些邻域之中并随机初始化粒子的初始速度。对每一个粒子,求出其目标函数值,并认为每个粒子的个体最优位置就是初始位置,粒子个体最优值为初始粒子目标函数值。
[0114]
建立用于存储非支配粒子的外部档案集,并从初始粒子群中挑选出互不支配的粒子存储到外部档案集,并随机挑选一个粒子作为全局最优粒子(这里的支配指的是pareto支配)。每一个迭代周期更新所有粒子的速度和位置。对每个粒子,计算对应的目标函数值,更新个体最优位置。然后更新外部档案集,档案集中被其他粒子支配的粒子将被删除,新的迭代周期内的粒子若与外部档案集内的粒子互不支配,则被加入外部档案集,这样,外部档案集就是非支配粒子群。对每一次迭代后得到的外部档案集、其中所有粒子对应的目标函数值即pareto front进行记录后就可以进入本文所提出的方法,先求得与上一次迭代得到的pareto front之间的距离,再对间隔距离进行平滑处理。计算不同次数迭代产生的pareto front之间的距离的过程为:
[0115]
s1:第l2次迭代后生成的第i个非劣解其所对应的联合目标函数计算其与支配他们的所对应的联合目标函数的欧氏距离
[0116][0117]
s2、对他们进行排序,从中选出距离的最小值作为第l1次迭代后第r个非劣解相对于第l2次迭代后产生的非劣解集的距离
[0118][0119]
若外部档案集λr是空集,则令
[0120]
s3、在计算出第l1次迭代后所产生的非劣解集中所有非劣解相对于第l2次迭代后产生的非劣解集的距离后,选择他们的平均值作为两次迭代所生成非劣解集所对应pareto front的间隔距离:
[0121][0122]
其中,r'为所有非劣解集集λr的大小。
[0123]
计算完成后,再用卡尔曼滤波器对间隔距离进行平滑处理,步骤如下:
[0124]
s1、计算第l2次迭代后的预测误差自相关矩阵
[0125][0126]
其中,a为状态转移矩阵,q为过程噪声,为第l1次迭代得到的修正后的误差互相关阵;
[0127]
s2、计算第l2次迭代后得到的卡尔曼增益矩阵:
[0128][0129]
其中,h为观测矩阵,r为观测噪声矩阵;
[0130]
s3、对本次迭代所生成的非劣解集所对应的pareto front与未迭代寻优时获得的pareto front的间隔距离进行修正:
[0131][0132]
其中,为状态矩阵的预测向量,状态向量包括第l2次迭代输出的pf与初始粒子所对应的pf的间距以及其变化趋势即第l2次迭代输出的pf与第l1次迭代输出的pf的间距:
[0133]
[0151]
从表1可知,有些时刻需要达到收敛所需的迭代寻优次数为10,在有些时刻需要的迭代寻优次数为19,而按之前的方法只能统一的设置一个固定的迭代次数10或者20,对有些时刻达不到收敛就结束迭代,或者对有些时刻达到收敛后继续浪费计算资源。
[0152]
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

技术特征:
1.一种基于自适应收敛的动态组网雷达天线配置方法,其特征在于,包括以下步骤:步骤1、采用基于卡尔曼滤波的预测模型,根据t1之前的多个时刻的雷达天线优化配置方案,对t1时刻的最优解进行预测;步骤2、以步骤1中生成的预测值作为算法的初值,开始进行粒子群优化迭代计算,得到每一步迭代所生成的非劣解集及其对应的pareto front;步骤3、计算动态粒子群优化算法相邻两步迭代计算所生成非劣解集所对应的pareto front间隔距离;步骤4、用卡尔曼滤波器对当前迭代生成的非劣解集的pareto front与未迭代寻优时获得的随机粒子群的pareto front的间隔距离进行平滑处理;步骤5、以修正后的间隔距离作为依据判断是否满足收敛条件,若满足,则停止迭代计算,将此次迭代产生的pareto front输出,以此作为算法最终输出结果,以实现动态组网雷达天线配置。2.根据权利要求1所述的方法,其特征在于,所述步骤1包括:步骤1.1、针对t1之前的若干时刻的环境,以传统粒子群优化算法对每个时刻的最优配置方案进行求解;步骤1.2、利用步骤1.1中的最优配置方案,以基于卡尔曼滤波的预测模型对t1时刻的天线配置方案进行预测。3.根据权利要求1所述的方法,其特征在于,所述步骤3包括:步骤3.1、首先对动态组网雷达天线配置问题的第t时刻子问题的第l2次迭代后生成的第i个非劣解其所对应的联合目标函数计算第l1次迭代后第r个非劣解所对应的联合目标函数与的欧氏距离的欧氏距离步骤3.2、采用步骤3.1中的公式,分别计算与第l2次迭代后生成的所有非劣解之间的欧氏距离,并从中选出距离的最小值作为第l1次迭代后第r个非劣解相对于第l2次迭代后产生的非劣解集的距离产生的非劣解集的距离若外部档案集λ
r
是空集,则令步骤3.3、在计算出第l1次迭代后所产生的非劣解集中所有非劣解相对于第l2次迭代后产生的非劣解集的距离后,将所有距离的平均值作为两次迭代所生成非劣解集所对应pareto front的间隔距离:
其中,r'为所有非劣解集集λ
r
的大小。4.根据权利要求1所述的方法,其特征在于,所述步骤4包括:步骤4.1、计算第l2次迭代后的预测误差自相关矩阵次迭代后的预测误差自相关矩阵其中,a为状态转移矩阵,q为过程噪声,为第l1次迭代得到的修正后的误差互相关阵;步骤4.2、计算第l2次迭代后得到的卡尔曼增益矩阵:其中,h为观测矩阵,r为观测噪声矩阵;步骤4.3、对第l2次迭代所生成的非劣解集所对应的pareto front与未迭代寻优时获得的pareto front的间隔距离进行修正:其中,为状态矩阵的预测向量,状态向量包括第l2次迭代输出的pf与初始粒子所对应的pf的间距以及其变化趋势即第l2次迭代输出的pf与第l1次迭代输出的pf的间距:其中,为直接计算的相邻两次迭代所生成的非劣解集所对应的pareto front的间隔距离,l2=l1+1;dis(0,l2,t)为直接计算的本次迭代所生成的非劣解集所对应的pareto front与未迭代寻优时获得的pareto front的间隔距离;步骤4.4、对预测误差自相关矩阵进行修正:其中,e表示单位矩阵。5.根据权利要求4所述的方法,其特征在于,在所述步骤4和所述步骤5中:计算每次算法迭代所生成的非劣解集所对应的pareto front与随机初始粒子的间隔距离,并以此为依据进行自适应的收敛判断并停止迭代,具体的操作方法为:第l-1次迭代后所得到状态向量为:其中,dis(0,l-1,t)为第l-1次迭代所生成的非劣解集所对应的pareto front与随机初始粒子的间隔距离,dis
l-2,l-1,t
为第l-1次迭代所生成的非劣解集所对应的pareto front
与第l-2次迭代所生成的非劣解集所对应的pareto front的间隔距离,则对第l次迭代后所得到状态向量进行预测为:其中,表示状态转移矩阵,且在步骤4.3对状态向量进行修正的时候,由于dis(0,l-1,t)、dis
l-1,l,t
都是可以直接获得的,所以其观测矩阵为:6.根据权利要求1所述的方法,其特征在于,所述步骤5包括:步骤5.1、当后一次迭代后所得到的值与前一次迭代后所得到的距离之比小于预设门限;步骤5.2、算法迭代过程中,连续两次同时满足步骤5.1中的条件则自适应地判断为已经满足算法收敛条件,停止迭代,将此次迭代产生的pareto front输出,作为算法最终获得的最优解集。7.根据权利要求1所述的方法,其特征在于,还包括:步骤6:用步骤5求得的最优解集中的站点配置方案,结合卡尔曼滤波,对预测模型进行修正。8.根据权利要求7所述的方法,其特征在于,所述步骤6包括:步骤6.1、根据实际情况从该最优解集中选择出多个粒子;步骤6.2、计算第t时刻预测误差互相关矩阵为p
t
:p
t-=ap
t-1
a
t
+qa即为状态转移矩阵,q为过程噪声,为第t-1时刻修正后预测误差互相关矩阵;步骤6.3、计算卡尔曼增益矩阵为k
t
:k
t
=p
t-h
t
(hp
t-h
t
+r)-1
其中h为观测矩阵,r为观测噪声矩阵;步骤6.4、结合步骤6.1选择出多个粒子对t时刻的站点配置方案进行修正:式中,为时刻t的预测状态向量,表示第t时刻修正过的状态向量,z
t
表示观测值;步骤6.5、对状态误差互相关矩阵的修正为:p
t
=(e-k
t
h)p
t-其中,e表示单位矩阵。

技术总结
本发明公开一种基于自适应收敛的动态组网雷达天线配置方法,该方法包括:采用基于卡尔曼滤波的预测模型,根据t1之前的多个时刻的雷达天线优化配置方案,对t1时刻的最优解进行预测;进行粒子群优化迭代计算,得到每一步迭代所生成的非劣解集及其对应的Pareto Front;计算动态粒子群优化算法相邻两步迭代计算所生成非劣解集所对应的Pareto Front间隔距离;对当前迭代生成的非劣解集的Pareto Front与未迭代寻优时获得的随机粒子群的Pareto Front的间隔距离进行平滑处理;以修正后的间隔距离作为依据判断是否满足收敛条件,以实现动态组网雷达天线配置。本发明能够有效节省计算资源,获得较好的雷达站点位置优化配置结果。果。果。


技术研发人员:汪子钦 史小伟 张圣鹋 汪兵 罗绣莲 丁怀 朱磊 杨秋
受保护的技术使用者:中国电子科技集团公司第二十九研究所
技术研发日:2023.03.06
技术公布日:2023/7/12
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

飞机超市 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

相关推荐