一种基于SSM的自动驾驶车队横纵向同步安全控制方法
未命名
07-20
阅读:433
评论:0

一种基于ssm的自动驾驶车队横纵向同步安全控制方法
技术领域
1.本发明涉及智能交通同步安全控制方法,尤其涉及一种基于ssm的自动驾驶车队横纵向同步安全控制方法。
背景技术:
2.现有研究表明,90%以上的车辆碰撞事故是由人为失误造成的。此外,根据美国交通部研究与创新技术管理局的数据,基于自动驾驶车辆技术,每年可以减少约80%的车辆碰撞事故。由于自动驾驶车队可以准确感知周围环境,反应时间可以忽略不计,并且不受分心、疲劳驾驶的影响,可以协调多辆车安全紧凑行驶,提高交通效率和安全性。然而,当自动驾驶车队外部干扰时,很难保持预先设定的车辆间距,增加碰撞的风险。目前,大部分自动驾驶车队控制算法都是假设车辆在直线公路上行驶,如自适应巡航控制和协同自适应巡航控制。然而,在弯曲的道路上,不仅应该考虑自动驾驶车辆行驶的纵向方向,还应该考虑横向的动态变化。此外,自动驾驶车队在弯曲道路上的碰撞风险比在直线道路上的要高。在解决弯曲道路上有外部干扰的自动驾驶车队安全控制方面的研究较少。
3.在弯曲道路上,自动驾驶车辆不仅要具有跟踪预定路径的能力,还需要避免碰撞以及降低由外部干扰引起的碰撞风险。对于自动驾驶车队的纵向和横向同步控制,当前大多数算法采用分层分级来处理该问题:首先仅考虑自动驾驶车辆的位置和速度来规划轨迹,然后使用简单的反馈控制器来跟踪规划的轨迹。为了实现自动驾驶车辆的可靠性和安全机动,研究人员提出了大量的运动规划策略,通过跟踪下层反馈控制器来优化自动驾驶车辆在各种道路上的行驶路径或轨迹。然而,上述研究要么将风险指标(例如,最小时间间隔、最小减速度)纳入控制目标以降低碰撞风险,要么考虑安全约束(例如,最小安全间隔、最小安全间隔)以确保车辆之间有足够的距离间隔。例如,有学者提出了一种用于自动驾驶系统的滚动时域控制方法,提供了一种在交通扰动下使自动驾驶车辆的安全风险最小化的机制。有了这种机制,替代安全措施(ssm)可以很容易地纳入自动驾驶车辆安全控制目标。在各种ssm中,碰撞时间(ttc)及其综合指标,如暴露碰撞时间(tet)、时间积分碰撞时间(tit)、追尾碰撞风险指数(rcri)、空间和停车距离的差异(dss)、避免碰撞的减速率(drac)和后侵入时间(pet)已被用于自动驾驶车辆安全评估。尽管ssm已被用于评估自动驾驶车辆的安全影响,但目前还没有研究直接将ssm作为自动驾驶车队轨迹优化的控制目标。
4.综上所述,在弯道情境下自动驾驶车队的轨迹优化中,直接考虑ssm的最优横向、纵向同步安全控制的关键技术亟待研究。
技术实现要素:
5.发明目的:本发明的目的是提供一种在不损失车辆运行效率的前提下,提高弯道场景下自动驾驶车队中车辆的安全的基于ssm的自动驾驶车队横纵向同步安全控制方法。
6.技术方案:本发明的自动驾驶车队横纵向同步安全控制方法,包括步骤如下:
7.s1,获取弯道场景道路信息;
8.s2,获取车队中所有车辆初始运行状态;
9.s3,设定车队中车辆安全间距控制策略,以固定车头时距策略进行车队控制;
10.s4,取从当前时刻到设定值的时间段作为模型预测控制的预测范围,并设计采样时间以及控制时间;
11.s5,基于所选取的ssm指标以及设计车辆目标车头间距,设计车辆控制目标函数;
12.s6,利用二次规划求取车辆控制目标函数的最优解;
13.s7,根据步骤s6得到的最优解,将车队中所有车辆第一个解作为控制输入对所有车辆进行控制;
14.s8,更新所有车辆运行状态;
15.s9,若车辆没有全部通过弯道场景,重复步骤s3至步骤s8,直至所有车辆通过弯道场景。
16.进一步,步骤s3中,设定车队中车辆安全间距控制策略,以固定车头时距策略进行车队控制的步骤如下:
17.s31,车辆i的横纵向状态满足下列方程:
[0018][0019][0020][0021][0022][0023][0024][0025][0026][0027]
式中,x为自动驾驶车辆i中心点纵向位移;y为自动驾驶车辆i中心点横向位移,为其导数;v
x
表示自动驾驶车辆i中心点的纵向速度,vy表示自动驾驶车辆i中心点的横向速度;ψ表示自动驾驶车辆i中心点的方向角,为其导数;r表示自动驾驶车辆i中心点的偏航率,为其导数;β为自动驾驶车辆i的侧滑角,为其导数;f
xr
表示自动驾驶车辆i后轮的纵向力,f
yf
表示自动驾驶车辆i前轮的横向力;f
yr
表示自动驾驶车辆i后轮的横向力;m为车辆质量;iz为中心点的偏航惯性;lr表示自动驾驶车辆中心点到后轮的距离;lf表示自动驾驶车辆中心点到前轮的距离;δ表示自动驾驶车辆i的转向角,为其导数,δ
′
表示自动驾驶车辆i的理想转向角;f
x
表示自动驾驶车辆i的纵向力,为其导数,f
′
x
表示自动驾驶车
辆i的理想纵向力。其中,δ
′
与f
′
x
为车辆输入的控制参数。
[0028]
s32,求解车辆状态方程,车辆状态方程的表达式如下:
[0029]
dx=fdt+g
·
udt
[0030]
其中,
[0031]
x=[x yψβr v
x vyδf
x
]
t
[0032][0033][0034]
g=[0 0 0 0 0 0 0 10 10]
t
[0035]
s33,选用固定车头时距策略,则表达式为:
[0036]
τ
*vi,x
(t)+lf+lr=(β
i-1,y
(t)-β
i,y
(t))
×r[0037]
式中,τ
*
表示车辆间车头间距;r表示弯道的曲率半径。
[0038]
进一步,步骤s5中,基于所选取的ssm指标以及设计车辆目标车头间距,设计目标函数的步骤包括:
[0039]
s51,确定车辆的状态约束条件:
[0040]-23deg≤δ≤23deg
[0041]
|f
′
x
|≤8600n
[0042]
s52,车辆控制目标表示为:
[0043]
min q(x,u)=α1(τ
*vi,x
(t)+lf+l
r-(β
i-1,y
(t)-β
i,y
(t))
×
r-s0)2+α2d2[0044]
+α3(v
i,x
(t)-v
i-1,x
(t))2+α4(ssm
*
)
[0045]
式中,α1、α2、α3、α4为权重系数;s0为静止间距;d为弯道几何影响系数;ssm
*
为根据所选择的ssm所设计的控制目标。
[0046]
进一步,当选取与前车碰撞时间ttc为控制目标时,由于ttc表示为:
[0047][0048]
则
[0049]
ssm
*ttc
=(v
i,x
(t)-v
i-1,x
(t))
2-((β
i-1,y
(t)-β
i,y
(t))
×
r-(lf+lr))2。
[0050]
进一步,当选取避免碰撞减速度drac为控制目标时,由于drac表示为:
[0051][0052]
式中,pi(t)表示车辆i的位置;l表示车长。
[0053]
则
[0054]
ssm
*drac
=(v
i,x
(t)-v
i-1,x
(t))
2-(β
i-1,y
(t)-β
i,y
(t))
×
r。
[0055]
进一步,当选取紧急减速碰撞潜在指数picud为控制目标时,由于picud表示为:
[0056][0057]
式中,a表示加速度;δt表示采样时间间隔;
[0058]
则有:
[0059][0060]
本发明与现有技术相比,其显著效果如下:
[0061]
本发明通过利用ssm进行车队中车辆目标函数设计,对车路协同环境下弯道场景下行驶的自动驾驶车队,实现了车队横纵向同步的、有效的安全控制。
附图说明
[0062]
图1为本发明中车辆横纵向变量示意图;
[0063]
图2为本发明的流程图;
[0064]
图3(a)为本发明自动驾驶车辆中心点空间位移变化的仿真效果示意图,
[0065]
图3(b)为本发明自动驾驶车辆中心点纵向位移变化的仿真效果示意图,
[0066]
图3(c)为本发明自动驾驶车辆中心点横向位移变化的仿真效果示意图,
[0067]
图3(d)为本发明自动驾驶车辆中心点的方向角变化的仿真效果示意图,
[0068]
图3(e)为本发明自动驾驶车辆的侧滑角变化的仿真效果示意图,
[0069]
图3(f)为本发明自动驾驶车辆中心点的纵向速度变化的仿真效果示意图,
[0070]
图3(g)为本发明自动驾驶车辆中心点的横向速度变化的仿真效果示意图,
[0071]
图3(h)为本发明自动驾驶车辆中心点的偏航率变化的仿真效果示意图,
[0072]
图3(i)为本发明自动驾驶车辆的转向角变化的仿真效果示意图,
[0073]
图3(j)为本发明自动驾驶车辆的纵向力变化的仿真效果示意图。
具体实施方式
[0074]
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
[0075]
需要注意的是,发明中所引用的如“上”、“下”、“左”、“右”、“前”、“后”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
[0076]
针对智能网联环境下,自动驾驶车队行驶在弯道场景下,本发明首先根据v2v与v2i通信技术利用将弯道信息以及车辆初始状态,接着利用选定的ssm(surrogate safety measures替代安全措施)指标以及车辆固定车头时距策略制定目标函数,并通过模型预测控制滚动时域的思想对应急车辆的路径选择进行动态规划,在不损失车辆运行效率的前提下,提高弯道场景下自动驾驶车队中车辆的安全。
[0077]
如图1所示,为本发明实施例的车辆横纵向变量示意图;如图2所示为本发明的自动驾驶车队横纵向同步安全控制方法框架图。本实施例适用于通过服务器等设备动态规划弯道场景下自动驾驶车队安全优化轨迹的情况。
[0078]
本发明的自动驾驶车队横纵向同步安全控制方法,包括步骤如下:
[0079]
步骤1,获取弯道场景道路信息,包括车道样式,曲率半径,车辆数量等环境参数。
[0080]
步骤2,获取车队中所有车辆初始运行状态,包括车辆位置,速度等状态参数。
[0081]
步骤3,设定车队中车辆安全间距控制策略,选取固定车头时距策略进行车队控制;具体实现步骤如下:
[0082]
步骤31,车辆i的运动状态变化如图1所示,其横纵向状态满足式(1)-(9):
[0083][0084][0085][0086][0087][0088][0089][0090][0091][0092]
其中,x为自动驾驶车辆i中心点纵向位移;y为自动驾驶车辆i中心点横向位移,为其导数;v
x
表示自动驾驶车辆i中心点的纵向速度,vy表示自动驾驶车辆i中心点的横向速度;ψ表示自动驾驶车辆i中心点的方向角,为其导数;r表示自动驾驶车辆i中心点的偏航率,为其导数;β为自动驾驶车辆i的侧滑角,为其导数;f
xr
表示自动驾驶车辆i后轮的纵向力,f
yf
表示自动驾驶车辆i前轮的横向力;f
yr
表示自动驾驶车辆i后轮的横向力;m为车辆质量;iz为中心点的偏航惯性;lr表示自动驾驶车辆中心点到后轮的距离;lf表示自动驾驶车辆中心点到前轮的距离;δ表示自动驾驶车辆i的转向角,为其导数,δ
′
表示自动驾驶车辆i的理想转向角;f
x
表示自动驾驶车辆i的纵向力,为其导数,f
′
x
表示自动驾驶车辆i的理想纵向力。其中,δ
′
与f
′
x
为车辆输入的控制参数。
[0093]
步骤32,根据式(1)-式(9),车辆状态方程可列为:
[0094]
dx=fdt+g
·
udt
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(10)
[0095]
其中,
[0096]
x=[x y ψ β r v
x v
y δ f
x
]
t
[0097]
[0098][0099]
g=[0 0 0 0 0 0 0 10 10]
t
[0100]
其中,t表示矩阵转置。
[0101]
步骤33,在步骤32条件下,第i辆车和第i-1辆车的固定车头时距策略为:
[0102]
τ
*vi,x
(t)+lf+ lr=(β
i-1,y
(t)-β
i,y
(t))
×rꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(11)
[0103]
式中,τ
*
表示车辆间车头间距;v
i,x
(t)表示第i辆自动驾驶车辆的纵向速度;lr表示自动驾驶车辆中心点到后轮的距离;lf表示自动驾驶车辆中心点到前轮的距离;β
i,y
(t)表示自动驾驶车辆i的横向侧滑角;r表示弯道的曲率半径。
[0104]
步骤4,取从当前时刻到10秒后的时间段作为模型预测控制的预测范围,并设计采样时间以及控制时间均为1秒。
[0105]
步骤5,基于所选取的ssm指标以及设计车辆目标车头间距,设计车辆控制目标函数;
[0106]
步骤51,确定车辆的状态约束条件:
[0107]-23deg≤δ≤23deg
ꢀꢀꢀꢀ
(12)
[0108]
|f
′
x
|≤8600n
ꢀꢀꢀꢀꢀꢀ
(13)
[0109]
步骤52,车辆控制目标可表示为:
[0110]
min q(x,u)=α1(τ
*vi,x
(t)+lf+l
r-(β
i-1,y
(t)-β
i,y
(t))
×
r-s0)2+α2d2+α3(v
i,x
(t)-v
i-1,x
(t))2+α4(ssm
*
)
ꢀꢀꢀꢀꢀ
(14)
[0111]
式中,α1、α2、α3、α4为权重系数;s0为静止间距;d为弯道几何影响系数;ssm
*
为根据所选择的ssm所设计的控制目标。
[0112]
例如:当选取ttc(time-to-collision,与前车碰撞时间)为控制目标时,由于ttc表示为:
[0113][0114]
则
[0115]
ssm*ttc=(v
i,x
(t)-v
i-1,x
(t))
2-((β
i-1,y
(t)-β
i,y
(t))
×
r-(lf+ lr))2ꢀꢀꢀꢀꢀ
(16)
[0116]
当选取drac(deceleration rate to avoid a crash,避免碰撞减速度)为控制目标时,由于drac表示为:
[0117][0118]
式中,pi(t)表示车辆i的位置;vi(t)表示车辆i的速度;v
i-1
(t)表示车辆i-1的速度;l表示车长。
[0119]
则
[0120]
ssm
*drac
=(v
i,x
(t)-v
i-1,x
(t))
2-(β
i-1,y
(t)-β
i,y
(t))
×rꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(18)
[0121]
当选取picud(potential index for collision with urgent deceleration,紧急减速碰撞潜在指数)为控制目标时,由于picud表示为:
[0122][0123]
式中,a表示加速度;δt表示采样时间间隔。
[0124]
则
[0125][0126]
步骤6,利用二次规划求取车辆目标函数的最优解。
[0127]
步骤7,根据步骤6中的最优解,将车队中所有车辆的第一个控制步长状态的解(即δ
′
与f
′
x
)作为控制输入对所有车辆进行迭代控制。
[0128]
步骤8,重复进行步骤1-7,更新所有车辆运行状态。
[0129]
步骤9,若车辆没有全部通过弯道场景,即车辆全部达到终点,重复步骤3至步骤8,直至所有车辆通过弯道场景。
[0130]
仿真实验:
[0131]
由6辆自动驾驶车辆组成的车队的参数如表1所示。
[0132]
表1 6辆自动驾驶车辆组成的车队的仿真数据设计
[0133][0134]
表2表示智能网联汽车(cav,connected and autonomous vehicle)三种固定车头时距策略(τ*=0.5s,τ*=1.0s,τ*=1.5s)下,以及不同ssm控制下的车队安全指标(最小ttc值,最大drac值,最小picud值)结果以及车队平稳状态(全程速度变化方差,全程加速度变化方差)结果。
[0135]
表2不同车头时距策略下环形道路上cav车队的安全性能
[0136][0137]
图3(a)~(j)是其中三种不同ssm(ttc,drac,picud)下的仿真效果示意图。
[0138]
由此可见,采用本发明后,能一定程度地提高自动驾驶车队在弯道场景下的安全性。且与不考虑ssm的车队相比,其安全性指标均有所提升,且速度与加速度方差相对较小,即车队可保证更平稳的驾驶过程。
[0139]
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。
技术特征:
1.一种基于ssm的自动驾驶车队横纵向同步安全控制方法,其特征在于,包括步骤如下:s1,获取弯道场景道路信息;s2,获取车队中所有车辆初始运行状态;s3,设定车队中车辆安全间距控制策略,以固定车头时距策略进行车队控制;s4,取从当前时刻到设定值的时间段作为模型预测控制的预测范围,并设计采样时间以及控制时间;s5,基于所选取的ssm指标以及设计车辆目标车头间距,设计车辆控制目标函数;s6,利用二次规划求取车辆控制目标函数的最优解;s7,根据步骤s6得到的最优解,将车队中所有车辆第一个解作为控制输入对所有车辆进行控制;s8,更新所有车辆运行状态;s9,若车辆没有全部通过弯道场景,重复步骤s3至步骤s8,直至所有车辆通过弯道场景。2.根据权利要求1所述基于ssm的自动驾驶车队横纵向同步安全控制方法,其特征在于,步骤s3中,设定车队中车辆安全间距控制策略,以固定车头时距策略进行车队控制的步骤如下:s31,车辆i的横纵向状态满足下列方程:s31,车辆i的横纵向状态满足下列方程:s31,车辆i的横纵向状态满足下列方程:s31,车辆i的横纵向状态满足下列方程:s31,车辆i的横纵向状态满足下列方程:s31,车辆i的横纵向状态满足下列方程:s31,车辆i的横纵向状态满足下列方程:s31,车辆i的横纵向状态满足下列方程:s31,车辆i的横纵向状态满足下列方程:式中,x为自动驾驶车辆i中心点纵向位移;y为自动驾驶车辆i中心点横向位移;为其导数;v
x
表示自动驾驶车辆i中心点的纵向速度,v
y
表示自动驾驶车辆i中心点的横向速度;ψ表示自动驾驶车辆i中心点的方向角,为其导数;r表示自动驾驶车辆i中心点的偏航率,为其导数;β为自动驾驶车辆i的侧滑角,为其导数;f
xr
表示自动驾驶车辆i后轮的纵向力,f
yf
表示自动驾驶车辆i前轮的横向力;f
yr
表示自动驾驶车辆i后轮的横向力;m为车辆
质量;i
z
为中心点的偏航惯性;l
r
表示自动驾驶车辆中心点到后轮的距离;l
f
表示自动驾驶车辆中心点到前轮的距离;δ表示自动驾驶车辆i的转向角,为其导数,δ
′
表示自动驾驶车辆i的理想转向角;f
x
表示自动驾驶车辆i的纵向力,为其导数,f
′
x
表示自动驾驶车辆i的理想纵向力。其中,δ
′
与f
′
x
为车辆输入的控制参数。s32,求解车辆状态方程,车辆状态方程的表达式如下:dx=fdt+g
·
udt其中,x=[x y ψ β r v
x v
y δ f
x
]
tt
g=[0 0 0 0 0 0 0 10 10]
t
s33,选用固定车头时距策略,则表达式为:τ
*
v
i,x
(t)+l
f
+l
r
=(β
i-1,y
(t)-β
i,y
(t))
×
r式中,τ
*
表示车辆间车头间距;v
i,x
(t)表示第i辆自动驾驶车辆的纵向速度;β
i,y
(t)表示自动驾驶车辆i的横向侧滑角;β
i-1,y
(t)表示自动驾驶车辆i-1的横向侧滑角;r表示弯道的曲率半径。3.根据权利要求2所述基于ssm的自动驾驶车队横纵向同步安全控制方法,其特征在于,步骤s5中,基于所选取的ssm指标以及设计车辆目标车头间距,设计目标函数的步骤包括:s51,确定车辆的状态约束条件:-23deg≤δ≤23deg|f
′
x
|≤8600ns52,车辆控制目标表示为:min q(x,u)=α1(τ
*
v
i,x
(t)+l
f
+l
r-(β
i-1,y
(t)-β
i,y
(t))
×
r-s0)2+α2d2+α3(v
i,x
(t)-v
i-1,x
(t))2+α4(ssm
*
)式中,α1、α2、α3、α4为权重系数;s0为静止间距;d为弯道几何影响系数;v
i-1,x
(t)表示第i-1辆自动驾驶车辆的纵向速度;ssm
*
为根据所选择的ssm所设计的控制目标。4.根据权利要求3所述基于ssm的自动驾驶车队横纵向同步安全控制方法,其特征在于,当选取与前车碰撞时间ttc为控制目标时,由于ttc表示为:则
ssm
*ttc
=(v
i,x
(t)-v
i-1,x
(t))
2-((β
i-1,y
(t)-β
i,y
(t))
×
r-(l
f
+l
r
))2。5.根据权利要求3所述基于ssm的自动驾驶车队横纵向同步安全控制方法,其特征在于,当选取避免碰撞减速度drac为控制目标时,由于drac表示为:式中,p
i
(t)表示车辆i的位置;p
i-1
(t)表示车辆i-1的位置;v
i
(t)表示车辆i的速度;v
i-1
(t)表示车辆i-1的速度;l表示车长。则ssm
*drac
=(v
i,x
(t)-v
i-1,x
(t))
2-(β
i-1,y
(t)-β
i,y
(t))
×
r。6.根据权利要求3所述基于ssm的自动驾驶车队横纵向同步安全控制方法,其特征在于,当选取紧急减速碰撞潜在指数picud为控制目标时,由于picud表示为:式中,a表示加速度;δt表示采样时间间隔;则
技术总结
本发明公开了一种基于SSM的自动驾驶车队横纵向同步安全控制方法,包括步骤如下:首先,针对智能网联环境下的弯道场景,自动驾驶车队中车辆接收到前后车运行信息以及路道状态信息后;再根据利用SSM以及车队间距策略构建自动驾驶车辆安全控制目标;接着利用模型预测控制与车辆动力学结合,对车辆的路径选择进行动态规划与实时控制。本发明能保障自动驾驶车队在弯道场景下的效率并提高其安全性。在弯道场景下的效率并提高其安全性。在弯道场景下的效率并提高其安全性。
技术研发人员:孙冬颖 钟鸿明 程建川
受保护的技术使用者:东南大学
技术研发日:2022.12.05
技术公布日:2023/7/19
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/