一种基于变系数微分干扰补偿的电磁流量计流量测量方法

未命名 08-05 阅读:86 评论:0

用于流量测量的补偿。
12.根据上述发明构思,本发明采取以下技术方案:
13.一种基于变系数微分干扰补偿的电磁流量计流量测量方法,在测量流量之前,先测量电导率的数据,将测量的电导率数据用于微分干扰信号的补偿,包括如下步骤:
14.步骤一:在不同流体电导率σ下,采集励磁电流i(t)上升段的电流值,及于励磁电流值所对应的电极实际信号u1(t);
15.步骤二:将已知的励磁上升段的电流值、励磁电流导数值和电极实际信号电压,根据电极实际信号模型公式u1(t)为电极电压,i(t)为励磁电流,a为流量系数,b1为变化的微分干扰系数;实行线性拟合,估算不同流体电导率σ所对应的微分干扰系数b1;微分干扰系数b1是与流体电导率σ存在某种关系的可变数值,利用多项式拟合求解微分干扰系数b1与流体电导率σ的函数关系式;
16.步骤三:变化的微分干扰系数b1乘上与电极信号电压对应的励磁电流微分值实时计算与电极信号电压对应的微分干扰ud(t);
17.步骤四:任意流量下,对电极实际信号u1(t)实施补偿,减掉电极实际信号中的微分干扰ud(t),得到微分干扰补偿后的电极实际信号uc(t);
18.步骤五:确定在经过微分干扰补偿后的电极实际信号uc(t)与励磁电流相比后的结果与流量之间的线性关系;经瞬态微分干扰ud(t)补偿过的电极实际信号uc(t)除上励磁电流,消掉时间作用,以得到与管道中导电性流体流速成正比的流量系数a;
19.步骤六:将7个励磁周期代表流量系数的平均值a
fin
与稳态励磁电流的乘积,作为经处理后的所测流量对应电压的结果值u
res

20.优选地,在所述步骤二中,微分干扰系数b1与电导率σ有关,b1为变化的系数。
21.优选地,在所述步骤一中,需要在不同流量、不同管道口径的测量环境下对不同流体的电导率σ、励磁电流i(t)上升段的电流值、电极实际信号同时进行采集,用于微分干扰系数b1的拟合。
22.优选地,在所述步骤三中,利用所采集的一个励磁电流上升周期内的某一时刻m点上的励磁电流导数值di(t)/dt,与变化系数b1做乘积,计算出该瞬态励磁电流相位点所对应于电极实际信号u1(t)上的瞬态微分干扰值ud(t):
[0023][0024]
优选地,在所述步骤四中,任意流量下,对电极实际信号u1(t)实施补偿,减掉电极实际信号中的微分干扰ud(t),然后在一个励磁周期的同一时刻m处,用对应于该瞬态励磁电流点上的u1(t)减掉变化的瞬态微分干扰值ud(t),对微分干扰进行补偿。则瞬态微分干扰值补偿后的电极实际信号uc(t)为:
[0025][0026]
可见,瞬态励磁电流点上的电极实际信号u1(t)减去瞬态微分干扰ud(t)后只余下流量项;流量项虽然受时间和导电性流体流速的共同影响,但流量项a
·
i(t)是励磁电流i
(t)与代表流量系数a的乘积,则该项受时间的影响是上升的励磁电流随时间变化引起的。
[0027]
优选地,在所述步骤五中,确定在经过微分干扰补偿后的电极实际信号uc(t)与励磁电流相比后的结果与流量之间的线性关系;经瞬态微分干扰ud(t)补偿过的电极实际信号uc(t)除上励磁电流,消掉时间作用,以得到与管道中导电性流体流速成正比的流量系数a:
[0028][0029]
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:
[0030]
1.本发明在流量测量方法上即实现了低功耗,又考虑了电导率因素的影响,提高了流量测量的准确性;
[0031]
2.本发明方法简单易行,成本低,适合推广使用。
附图说明
[0032]
图1为本发明的变系数瞬态微分干扰补偿法流程图。
[0033]
图2为本发明优选实施例的流量为1.19m/s时12个不同流体电导率对应的一个励磁周期电极信号电压图。
[0034]
图3为优选实施例的电导率为54.46μs/cm时变系数补偿结果与流速的拟合曲线。
[0035]
图4为优选实施例的电导率为129.11μs/cm时变系数补偿结果与流速的拟合曲线。
[0036]
图5为优选实施例的电导率为233.74μs/cm时变系数补偿结果与流速的拟合曲线。
[0037]
图6为优选实施例的电导率为322.22μs/cm时变系数补偿结果与流速的拟合曲线。
具体实施方式
[0038]
以下结合具体的实施例子对上述方案做进一步说明,本发明的优选实施例详述如下:
[0039]
实施例一:
[0040]
在本实施例中,参见图1,一种基于变系数微分干扰补偿的电磁流量计流量测量方法,在测量流量之前,先测量电导率的数据,将测量的电导率数据用于微分干扰信号的补偿,包括如下步骤:
[0041]
步骤一:在不同流体电导率σ下,采集励磁电流i(t)上升段的电流值,及于励磁电流值所对应的电极实际信号u1(t);
[0042]
步骤二:将已知的励磁上升段的电流值、励磁电流导数值和电极实际信号电压,根据电极实际信号模型公式u1(t)为电极电压,i(t)为励磁电流,a为流量系数,b1为变化的微分干扰系数;实行线性拟合,估算不同流体电导率σ所对应的微分干扰系数b1;微分干扰系数b1是与流体电导率σ存在某种关系的可变数值,利用多项式拟合求解微分干扰系数b1与流体电导率σ的函数关系式;
[0043]
步骤三:变化的微分干扰系数b1乘上与电极信号电压对应的励磁电流微分值实时计算与电极信号电压对应的微分干扰ud(t);
[0044]
步骤四:任意流量下,对电极实际信号u1(t)实施补偿,减掉电极实际信号中的微分干扰ud(t),得到微分干扰补偿后的电极实际信号uc(t);
[0045]
步骤五:确定在经过微分干扰补偿后的电极实际信号uc(t)与励磁电流相比后的结果与流量之间的线性关系;经瞬态微分干扰ud(t)补偿过的电极实际信号uc(t)除上励磁电流,消掉时间作用,以得到与管道中导电性流体流速成正比的流量系数a;
[0046]
步骤六:将7个励磁周期代表流量系数的平均值a
fin
与稳态励磁电流的乘积,作为经处理后的所测流量对应电压的结果值u
res

[0047]
本实施例基于变系数微分干扰补偿的电磁流量计流量测量方法。该方法将电导率作为变化量,通过测量电导率来补偿微分干扰信号,以此提高流量测量的准确性。本发明在降低功耗的同时又提高了流量测量精度。
[0048]
实施例二:
[0049]
本实施例与实施例一基本相同,特别之处在于:
[0050]
在本实施例中,一种基于变系数微分干扰补偿的电磁流量计流量测量方法。
[0051]
在所述步骤一中,需要在不同流量、不同管道口径的测量环境下对不同流体的电导率σ、励磁电流i(t)上升段的电流值、电极实际信号同时进行采集,用于微分干扰系数b1的拟合。
[0052]
在所述步骤二中,微分干扰系数b1与电导率σ有关,b1为变化的系数。
[0053]
在所述步骤三中,利用所采集的一个励磁电流上升周期内的某一时刻m点上的励磁电流导数值di(t)/dt,与变化系数b1做乘积,计算出该瞬态励磁电流相位点所对应于电极实际信号u1(t)上的瞬态微分干扰值ud(t):
[0054][0055]
在所述步骤四中,任意流量下,对电极实际信号u1(t)实施补偿,减掉电极实际信号中的微分干扰ud(t),然后在一个励磁周期的同一时刻m处,用对应于该瞬态励磁电流点上的u1(t)减掉变化的瞬态微分干扰值ud(t),对微分干扰进行补偿。则瞬态微分干扰值补偿后的电极实际信号uc(t)为:
[0056][0057]
可见,瞬态励磁电流点上的电极实际信号u1(t)减去瞬态微分干扰ud(t)后只余下流量项;流量项虽然受时间和导电性流体流速的共同影响,但流量项a
·
i(t)是励磁电流i(t)与代表流量系数a的乘积,则该项受时间的影响是上升的励磁电流随时间变化引起的。
[0058]
优选地,在所述步骤五中,确定在经过微分干扰补偿后的电极实际信号uc(t)与励磁电流相比后的结果与流量之间的线性关系;经瞬态微分干扰ud(t)补偿过的电极实际信号uc(t)除上励磁电流,消掉时间作用,以得到与管道中导电性流体流速成正比的流量系数a:
[0059][0060]
本实施例基于变系数微分干扰补偿的电磁流量计流量测量方法,在测量流量之前,先测量电导率的数据,将测量的电导率数据用于微分干扰信号的补偿。本发明能在低功
耗下提高流量的测量精度。
[0061]
实施例三:
[0062]
本实施例与上述实施例基本相同,特别之处在于:
[0063]
在本实施例中,一种基于变系数微分干扰补偿的电磁流量计流量测量方法,步骤如下:
[0064]
步骤一:在流速分别为0.02m/s、0.31m/s、0.59m/s、0.94m/s、1.19m/s、1.53m/s、1.82m/s、2.14m/s、2.39m/s、2.72m/s和2.98m/s下,分次取流体电导率为54.6μs/cm~322.22μs/cm的12组瞬态电极实际信号。图2为流速为1.19m/s时,12个不同流体电导率对应的一个励磁周期电极信号电压。由图可见,不同电导率下微分干扰的峰值不同,每一条曲线均承载相应的微分干扰系数b1。
[0065]
步骤二:根据公式(1),在dn40口径下,将不同电导率值σ与微分干扰系数b1进行拟合,得到b1与σ的数学模型表达式可为:
[0066]
b1=2.13
×
10-5
σ2+5.17
×
10-4
σ+5.75(5)
[0067]
步骤三:利用所采集的一个励磁电流上升周期内的某一时刻m点上的励磁电流导数值di(t)/dt,与变化系数b1做乘积,计算出该瞬态励磁电流相位点所对应于电极实际信号u1(t)上的瞬态微分干扰值ud(t)。
[0068]
步骤四:0~3m/s下,取12个不同的流速对电极实际信号u1(t)实施补偿,减掉电极实际信号中的微分干扰;之后在一个励磁周期的同一时刻m处,用对应于该瞬态励磁电流点上的u1(t)减掉变化的瞬态微分干扰值ud(t),对微分干扰进行补偿。
[0069]
步骤五:经瞬态微分干扰ud(t)补偿过的电极实际信号uc(t)除上励磁电流,消掉时间作用,以得到与管道中导电性流体流速成正比的流量系数a。
[0070]
步骤六:将7个励磁周期代表流量系数的平均值a
fin
与稳态励磁电流的乘积,作为经该方法进行处理后的所测流量对应电压的结果值u
res

[0071]
在流速分别为0.02m/s、0.31m/s、0.59m/s、0.94m/s、1.19m/s、1.53m/s、1.82m/s、2.14m/s、2.39m/s、2.72m/s和2.98m/s场景下,图3、图4、图5、图6分别对应于54.46μs/cm、129.11μs/cm、233.74μs/cm和322.22μs/cm这四个不同电导率下,拟合出的变系数瞬态微分干扰补偿法的处理值与流速的对应关系。
[0072]
图3、图4、图5、图6可知,即便流体电导率改变,变系数瞬态微分干扰补偿在不同流体电导率下的输出值依然落在或均匀分布于拟合曲线的两端,补偿后的电极实际信号除以励磁电流所得的处理结果与流速之间具有良好的线性关系。
[0073]
另外,以下为瞬态微分干扰补偿法与变系数微分干扰补偿法的对比结果。
[0074]
为定量评价瞬态微分干扰补偿法与系数微分干扰补偿法的效果,将流速约为0.02m/s、0.31m/s、0.59m/s、0.94m/s、1.19m/s、1.53m/s、1.82m/s、2.14m/s、2.39m/s、2.72m/s和2.98m/s时,大约所对应的2.5mv、14.93.mv、30.05mv、44.28mv、60.73mv、75.12mv、90.16mv、104.8mv、120.4mv、134.9mv和150.2mv看作实际流量幅值f,选用离散度δdis和平均相对误差δ作为评价指标,其定义分别为:
[0075][0076]
[0077]
其中fi代表实际流量幅值为f时,每一个已知电导率的流体介质所对应的代表测量流量对应电压值的最终输出结果。流速固定时,min、max、和mean分别对应12个不同流体电导率下的电极实际信号经瞬态微分干扰补偿法处理后,最终补偿输出结果中的最小值、最大值和平均值。
[0078]
离散度δdis所指代的含义是在不同电导率下计算得到的最大max、最小min补偿输出结果分散在平均值mean周围的程度。δdis值越大,表示同一流速下不同电导率所对应的补偿输出结果值不紧密,与平均值的距离越大,即采用该方法克服微分干扰的效果越差。反之δdis值越小,表示同一流速下不同电导率所对应的补偿输出结果值相近,即采用该方法克服微分干扰的效果越好。
[0079]
表1.瞬态微分干扰补偿法的评价指标值
[0080][0081]
从表1可得出,瞬态微分干扰补偿法在计算不同流体电导率对应相同流速的离散度指标值δdis很高,补偿输出结果值分散,表明瞬态微分干扰补偿法克服微分干扰的效果不好。且计算出的平均相对误差较大,更直观地表明瞬态微分干扰补偿法并未有效的减掉微分干扰,补偿处理结果与流量不成正比,准确性较差。
[0082]
表2.变系数瞬态微分干扰补偿法的评价指标值
[0083][0084]
表2为变系数微分干扰补偿方法的评价指标,表1和表2进行对比发现,即便流体电导率改变,变系数瞬态微分干扰补偿在不同流体电导率下的输出值依然落在或均匀分布于拟合曲线的两端,补偿后的电极实际信号除以励磁电流所得的处理结果与流速之间具有良好的线性关系。同时最小、最大补偿处理值间距大幅度缩小,结果值紧密,表中的最大离散度指标值仅零流速下的2.1%,整体离散度δdis远小于瞬态干扰补偿法,且该方法在计算不同电导率下相同流速的平均相对误差较小,测量准确性较好。
[0085]
可见,本发明基于变系数的瞬态微分干扰补偿法在克服微分干扰时取得较出色的表现,流量信号中的微分干扰项被有效消除,显著改善了瞬态微分干扰补偿法在不同流体电导率时测量流量所带来的结果不准确现象。
[0086]
上面对本发明实施例结合附图进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明的技术原理和发明构思,都属于本发明的保护范围。

技术特征:
1.一种基于变系数微分干扰补偿的电磁流量计流量测量方法,其特征在于:在测量流量之前,先测量电导率的数据,将测量的电导率数据用于微分干扰信号的补偿,包括如下步骤:步骤一:在不同流体电导率σ下,采集励磁电流i(t)上升段的电流值,及于励磁电流值所对应的电极实际信号u1(t);步骤二:将已知的励磁上升段的电流值、励磁电流导数值和电极实际信号电压,根据电极实际信号模型公式u1(t)为电极电压,i(t)为励磁电流,a为流量系数,b1为变化的微分干扰系数;实行线性拟合,估算不同流体电导率σ所对应的微分干扰系数b1;微分干扰系数b1是与流体电导率σ存在某种关系的可变数值,利用多项式拟合求解微分干扰系数b1与流体电导率σ的函数关系式;步骤三:变化的微分干扰系数b1乘上与电极信号电压对应的励磁电流微分值实时计算与电极信号电压对应的微分干扰u
d
(t);步骤四:任意流量下,对电极实际信号u1(t)实施补偿,减掉电极实际信号中的微分干扰u
d
(t),得到微分干扰补偿后的电极实际信号u
c
(t);步骤五:确定在经过微分干扰补偿后的电极实际信号u
c
(t)与励磁电流相比后的结果与流量之间的线性关系;经瞬态微分干扰u
d
(t)补偿过的电极实际信号u
c
(t)除上励磁电流,消掉时间作用,以得到与管道中导电性流体流速成正比的流量系数a;步骤六:将7个励磁周期代表流量系数的平均值a
fin
与稳态励磁电流的乘积,作为经处理后的所测流量对应电压的结果值u
res
。2.根据权利要求1所述的一种基于变系数微分干扰补偿的电磁流量计流量测量方法,其特征在于:在所述步骤二中,微分干扰系数b1与电导率σ有关,b1为变化的系数。3.根据权利要求1所述的一种基于变系数微分干扰补偿的电磁流量计流量测量方法,其特征在于:在所述步骤一中,需要在不同流量、不同管道口径的测量环境下对不同流体的电导率σ、励磁电流i(t)上升段的电流值、电极实际信号同时进行采集,用于微分干扰系数b1的拟合。4.根据权利要求1所述的一种基于变系数微分干扰补偿的电磁流量计流量测量方法,其特征在于:在所述步骤三中,利用所采集的一个励磁电流上升周期内的某一时刻m点上的励磁电流导数值di(t)/dt,与变化系数b1做乘积,计算出该瞬态励磁电流相位点所对应于电极实际信号u1(t)上的瞬态微分干扰值u
d
(t):5.根据权利要求1所述的一种基于变系数微分干扰补偿的电磁流量计流量测量方法,其特征在于:在所述步骤四中,任意流量下,对电极实际信号u1(t)实施补偿,减掉电极实际信号中的微分干扰u
d
(t),然后在一个励磁周期的同一时刻m处,用对应于该瞬态励磁电流点上的u1(t)减掉变化的瞬态微分干扰值u
d
(t),对微分干扰进行补偿;则瞬态微分干扰值补偿后的电极实际信号u
c
(t)为:
瞬态励磁电流点上的电极实际信号u1(t)减去瞬态微分干扰u
d
(t)后只余下流量项;流量项虽然受时间和导电性流体流速的共同影响,但流量项a
·
i(t)是励磁电流i(t)与代表流量系数a的乘积,则该项受时间的影响是上升的励磁电流随时间变化引起的。6.根据权利要求1所述的一种基于变系数微分干扰补偿的电磁流量计流量测量方法,其特征在于:在所述步骤五中,确定在经过微分干扰补偿后的电极实际信号u
c
(t)与励磁电流相比后的结果与流量之间的线性关系;经瞬态微分干扰u
d
(t)补偿过的电极实际信号u
c
(t)除上励磁电流,消掉时间作用,以得到与管道中导电性流体流速成正比的流量系数a:

技术总结
本发明公开了一种基于变系数微分干扰补偿的电磁流量计流量测量方法。现有电磁流量计利用微分干扰信号来测量流量,提出了瞬态微分干扰补偿方法,但在流体电导率变化较大的环境下测量精度不高。针对上述问题,本发明通过建立微分干扰系数与流体电导率的数学关系,将电导率作为补偿依据,提出了一种变系数瞬态微分干扰补偿方法。利用该方法既可降低测量流量时的功率,又可提高测量精度。又可提高测量精度。又可提高测量精度。


技术研发人员:李斌 赵望城 陈洁
受保护的技术使用者:上海大学
技术研发日:2023.05.29
技术公布日:2023/8/4
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

飞机超市 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

相关推荐