一种中间相碳微球-硅碳复合材料及其制备方法与流程

未命名 08-05 阅读:119 评论:0


1.本发明涉及锂离子电池材料制备技术领域,具体提供一种中间相碳微球-硅碳复合材料及其制备方法。


背景技术:

2.锂离子电池是当今国际公认的理想化学能源,具有体积小、电容量大、电压高等优点,被广泛用于移动电话手提电脑等电子产品,日益扩大的电动汽车领域将给锂离子电池带来更大的发展空间。
3.锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括正极材料、负极材料、电解质和隔膜等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。通常负极材料一般选用碳材料,硅作为地壳中的元素,储量丰富,同时其具有很高的理论比容量(4200mahg-1
),使其成为石墨负极材料的替代材料之一。
4.硅基材料以其能量密度高、材料来源广泛而成为高能量密度锂离子电池的首选负极材料,但是其膨胀高造成其电池模组膨胀力大并降低其循环性能,因此为提升硅基材料在锂离子电池的应用范围,需要从降低硅基材料的膨胀方面进行改进。而降低硅基材料的膨胀措施很多:比如硅的纳米化、硅的晶粒尺寸降低、多孔硅、硅的包覆改性及其硅基材料与碳基材料的复合降低膨胀,上述措施虽然可以降低膨胀,但是会造成材料的其它性能恶化,比如高温存储、首次效率及其比容量等电性能下降。


技术实现要素:

5.中间相碳微球以其各向同性,结构稳定等特性而应用于高倍率、长寿命、低膨胀锂离子电池,但是其比容量偏低影响其能量密度的提升。
6.因此本发明通过在中间相碳微球中掺杂硅基材料,不但可以提升能量密度而且可以降低膨胀。
7.为降低硅基材料的膨胀,本发明通过磁控溅射法在中间相碳微球表面沉积硅基材料并进行表面硼掺杂提升电子导电率和降低不可逆容量,制备出中间相碳微球-硅碳复合材料,降低膨胀,提升比容量和首次效率。
8.为实现上述发明目的,本发明提供了一种中间相碳微球-硅碳复合材料及其制备方法;一方面,本发明提供了如下技术方案:一种中间相碳微球-硅碳复合材料制备方法,所述方法的实现包括,对中间型碳微球进行表面处理,然后通过磁控溅射法在其表面沉积纳米硅,再通过气相沉积法沉积含有硼的碳源,得到所述中间相碳微球-硅碳复合材料。
9.更进一步的,所述中间型碳微球进行表面处理的过程包括内容如下:将所述中间相碳微球转移到等离子反应腔内,在入口端和出口端分别设置等离子
源,其中入口端的等离子源为氧气和氩气混合气,体积比1:1~10,出口端等离子源为氨气和氩气混合气混合气,体积比1:1~10,反应室入口端的温度保持在200℃,由所述入口端至所述出口出口端温度逐渐升高,温升速率10~20℃/min,出口端的温度保持在500℃,得到氮掺杂氧化中间相碳微球。
10.更进一步的,所述磁控溅射法的实现过程包括内容如下:以纳米硅基材料为靶材,将所述氮掺杂氧化中间相碳微球转移到真空室中并作为基体,抽真空,压力控制到10-4
~10-3
pa;将所述基体加热到100~200℃,将ar气通入真空室,将所述靶材对所述基体进行轰击,得到硅氮共掺杂氧化中间相碳微球。
11.更进一步的,所述气相沉积法的实现包括步骤如下:将所述硅氮共掺杂氧化中间相碳微球通入三氯化硼混合气体,加热,保温,之后改通碳源气体,加热,保温,最后停止加热,降温,粉碎,得到硼掺杂无定形碳包覆的所述中间相碳微球-硅碳复合材料。
12.更进一步的,所述三氯化硼混合气体为三氯化硼和氩气的混合气体,三氯化硼和氩气的 体积比1:1~10,流量10~100ml/min。
13.更进一步的,所述碳源气体为甲烷、乙烷、乙烯、乙炔中的一种或多种的组合,流量10~100ml/min。
14.更进一步的,所述纳米硅基材料为纳米si或纳米sio。
15.更进一步的,所述方法在气相沉积过程中,在通入三氯化硼混合气体之前,首先通入惰性气体排除管内空气;气相沉积过程完成后,降温在氩气气氛下进行。
16.更进一步的,所述三氯化硼混合气体通入过程中,温度保持在300~500℃,保温0.5~2h;所述碳源气体通入过程中,温度保持在700~1200℃,保温0.5~2h。
17.本发明另一方面,提供技术方案如下:一种中间相碳微球-硅碳复合材料,所述中间相碳微球-硅碳复合材料上述任一方法制备。
18.与现有技术相比,本发明一种中间相碳微球-硅碳复合材料及其制备方法具有以下突出的有益效果:1)通过磁控溅射法在改性中间相碳微球表面沉积硅基材料,一方面利用氮掺杂氧化中间相碳微球表面的羧基、羟基使其硅基材料容易沉积在其表面,具有结合力强等优点,避免硅基材料在中间相碳微球的脱落,提升稳定性。同时中间相碳微球表面的n掺杂,具有较高的电子传导能力和相对稳定的结构,显著提升了材料的循环性能,延长了使用寿命;同时磁控溅射方法,反应时间短,工艺简单,可以有效实现连续化生产。
19.2)通过气体表面改性,即三氯化硼表面改性掺杂硼并进行碳化,得到硼掺杂无定形碳包覆硅氮中间相碳微球,提升外层的电子导电率和降低不可逆容量,提升首次效率,并改善存储性能。
附图说明
20.图1是本发明制备出的一种中间相碳微球-硅碳复合材料的sem图。
实施方式
21.下面将结合附图和实施例,对本发明作进一步详细说明。
实施例
22.步骤s1:将中间相碳微球转移到等离子反应腔内,在入口端和出口端分别设置等离子源,入口端的离子源为氧气/氩气混合气(体积比1:5),出口端为氨气/氩气混合气混合气(体积比1:5),在反应室入口端的温度为200℃,由入口至出口温度不断升高,升温速率15℃/min,反应室出口端的温度为500℃,得到氮掺杂氧化中间相碳微球;步骤s2:采用磁控溅射法,以纳米si为靶材,氮掺杂氧化中间相碳微球转移到真空室中并作为基体,抽真空到5*10-3
pa,并加热基体到150℃,之后真空室通入ar气,靶材对真空室的基体进行轰击,得到硅氮共掺杂氧化中间相碳微球;步骤s3:之后将硅氮共掺杂氧化中间相碳微球转移到管式炉中,首先通入氩气惰性气体排除管内空气,之后通入三氯化硼混合气体(体积比,三氯化硼:氩气=1:5,流量50ml/min),并加热到400℃保温1h,之后改通甲烷气体(流量50ml/min),并加热到950℃保温1h,最后停止加热,在氩气气氛下降温到室温、粉碎,得到硼掺杂无定形碳包覆中间相碳微球-硅碳复合材料。
实施例
23.步骤s1:将中间相碳微球转移到等离子反应腔内,在入口端和出口端分别设置等离子源,入口端的离子源为氧气/氩气混合气(体积比1:1),出口端为氨气/氩气混合气混合气(体积比1:1),在反应室入口端的温度为200℃,由入口至出口温度不断升高,升温速率10℃/min,反应室出口端的温度为500℃,得到氮掺杂氧化中间相碳微球;步骤s2:采用磁控溅射法,以sio为靶材,氮掺杂氧化中间相碳微球转移到真空室中并作为基体,抽真空到10-4
pa,并加热基体到100℃,之后真空室通入ar气,靶材对真空室的基体进行轰击,得到硅氮共掺杂氧化中间相碳微球;步骤s3:之后将硅氮共掺杂氧化中间相碳微球转移到管式炉中,首先通入氩气惰性气体排除管内空气,之后通入三氯化硼混合气体(体积比,三氯化硼:氩气=1:1,流量10ml/min),并加热到300℃保温2h,之后改通乙烯气体,并加热到800℃保温2h,最后停止加热,在氩气气氛下降温到室温、粉碎,得到硼掺杂无定形碳包覆中间相碳微球-硅碳复合材料。
实施例
24.步骤s1:将中间相碳微球转移到等离子反应腔内,在入口端和出口端分别设置等离子源,
入口端的离子源为氧气/氩气混合气(体积比1: 10),出口端为氨气/氩气混合气混合气(体积比1: 10),在反应室入口端的温度为200℃,由入口至出口温度不断升高,升温速率20℃/min,反应室出口端的温度为500℃,得到氮掺杂氧化中间相碳微球;步骤s2:采用磁控溅射法,以sio为靶材,氮掺杂氧化中间相碳微球转移到真空室中并作为基体,抽真空到10-3
pa,并加热基体到200℃,之后真空室通入ar气,靶材对真空室的基体进行轰击,得到硅氮共掺杂氧化中间相碳微球;步骤s3:之后将硅氮共掺杂氧化中间相碳微球转移到管式炉中,首先通入氩气惰性气体排除管内空气,之后通入三氯化硼混合气体(体积比,三氯化硼:氩气=1:1),并加热到500℃保温0.5h,之后改通乙炔气体,并加热到700℃保温0.5h,最后停止加热,在氩气气氛下降温到室温、粉碎,得到硼掺杂无定形碳包覆中间相碳微球-硅碳复合材料。
25.对比例:将100g中间相碳微球与5g沥青、1g苯胺混合均匀,之后在温度为400℃碳化1h,得到氮掺杂中间相碳微球。之后取50g sio与30g氮掺杂中间相碳微球混合均匀,之后转移到管式炉中,首先通入氩气惰性气体排除管内空气,之后通甲烷气体(流量50ml/min),并加热到950℃保温1h,最后停止加热,在氩气气氛下降温到室温、粉碎,得到无定形碳包覆中间相碳微球-硅碳复合材料。
26.测试试验:(1)形貌测试对实施例1中的中间相碳微球-硅碳复合材料进行sem测试,测试结果如图1所示。由图1可知,该材料呈现球状结构,大小分布均匀,颗粒粒径介于8-12μm之间。
27.(2)扣式电池测试将实施例1-3及对比例中的中间相碳微球-硅碳复合材料作为锂离子电池负极材料组装成扣式电池,分别记为a1、a2、a3、b1。
28.具体制备方法为:在锂离子电池负极材料中添加粘结剂、导电剂及溶剂,进行搅拌制浆,涂覆在铜箔上,经过烘干、碾压制得负极片;所用粘结剂为la132,导电剂为sp,溶剂为nmp,负极材料、sp、pvdf、nmp的用量比例为95g:1g:4g:220ml;电解液中lipf6为电解质,体积比为1:1的ec和dec的混合物为溶剂;金属锂片为对电极,隔膜采用聚丙烯(pp)膜。扣式电池装配在充氩气的手套箱中进行。电化学性能在武汉蓝电ct2001a型电池测试仪上进行,充放电电压范围为0.005v至2.0v,充放电速率为0.1c,并测试其循环性能(0.1c/0.1c,100周)。测试结果如表1所示。
29.表1
材料首次放电比容量(mah/g)首次效率(%)比表面积(m2/g)振实密度(g/cm3)粉体电导率(s/cm)循环性能实施例1998.486.97.51.092.8192.1%实施例2881.485.57.41.071.9990.9%实施例3868.985.36.71.051.8590.4%对比例842.483.13.70.850.6587.3%
由表1中的数据可以看出,本发明的实施例制备出的中间相碳微球-硅碳复合材料的比容量、首次效率、循环性能明显优于对比例1。其原因是:通过磁控溅射法可以均匀的将
硅基材料沉积在中间相碳微球表面,且氮掺杂氧化中间相碳微球与硅基材料具有较好的结合力,降低阻抗提升材料的比容量发挥,并提升首次效率。
30.(3)软包电池测试:将实施例1-3及对比例中的中间相碳微球-硅碳复合材料掺杂80%的人造石墨作为负极材料制得负极片,以ncm532为正极材料;电解液中lipf6为电解质,体积比为1:1的ec和dec的混合物为溶剂;以celgard 2400膜为隔膜,制备出5ah软包电池,标记为c1、c2、c3、d1。分别测试负极片的吸液保液能力、极片物理反弹率、循环性能、极片满电膨胀。
31.a.吸液能力测试采用1ml的滴定管,并吸取电解液vml,在极片表面滴加一滴,并进行计时,直至电解液吸收完毕,记下时间t,计算极片的吸液速度v/t。测试结果如表2所示。
32.b.保液率测试按照极片参数计算出极片的理论吸液量m1,并称取极片的重量m2,之后将极片放置到电解液中浸泡24h,称取极片的重量为m3,计算出极片吸液量m
3-m2,并按照下式计算:保液率=(m
3-m2)*100%/m1。测试结果如表2所示。
33.表2材料吸液速度(s)保液率实施例15693.1%实施例26592.0%实施例36992.2%对比例112184.7%从表2可以看出,实施例1-3所得中间相碳微球-硅碳复合材料的吸液保液能力明显高于对比例。实验结果表明,本发明的中间相碳微球-硅碳复合材料具有较高的吸液保液能力。其原因在于:实施例复合材料的比表面较大,提升材料的吸液保液能力。
34.c.极片物理反弹率测试首先采用测厚仪测试其极片的平均厚度为d1,之后将极片放置在80度的真空干燥箱中干燥48h,测试极片的厚度为d2,并按下式计算:反弹率=(d2-d1)*100%/d1。测试结果如表3所示。
35.d.极片电阻率测试采用电阻率测试仪测试极片的电阻率,测试结果如表3所示。
36.e.极片满电膨胀测试对5ah软包电池进行充电到100%soc,之后解剖拆解,测试其负极极片的厚度为d3,同时测试其负极极片辊压的厚度为d1,并计算出负极极片的满电膨胀率=(d3-d1)/d1*100%。
37.表3材料极片物理反弹率(%)极片电阻率(mω)极片满电膨胀率(%)实施例17.815.834.8实施例28.616.935.7实施例39.117.136.9对比例15.6218.542.8
从表3中数据可以看出,采用实施例1-3所得负极极片反弹率和电阻率明显低于对比例,即采用本发明的复合材料制得的负极片具有较低的反弹率和电阻率。其原因在于:采用磁控溅射法可以将硅基材料致密的沉积在中间相碳微球的表面或内部,使其材料之间的接触较好,反弹更低。
38.f.循环性能测试以充放电倍率为1c/1c、电压范围为2.5v-4.2v,在温度25
±
3℃下测试电池的循环性能。测试结果如表4所示。
39.表4电池负极材料循环500次容量保持率(%)c1实施例192.60c2实施例291.72c3实施例390.31d1对比例85.52由表4可以看出,本发明的中间相碳微球-硅碳复合材料制得的电池的循环性能明显优于对比例,其原因为,本发明的中间相碳微球-硅碳复合材料制得的极片具有较低的膨胀率,在充放电过程中极片的结构更加稳定,提高了其循环性能;另外通过掺杂硼降低阻抗,提升材料的结构稳定性,并改善循环性能。
40.将碳源气体更换为乙烷或甲烷、乙烷、乙烯、乙炔中的一种或多种的组合,制得的硅基复合负极材料性能相近。
41.以上所述的实施例,只是本发明较优选的具体实施方式,本领域的技术人员在本发明技术方案范围内进行的通常变化和替换都应包含在本发明的保护范围内。

技术特征:
1.一种中间相碳微球-硅碳复合材料制备方法,其特征在于,所述方法的实现包括,对中间型碳微球进行表面处理,然后通过磁控溅射法在其表面沉积纳米硅,再通过气相沉积法沉积含有硼的碳源,得到所述中间相碳微球-硅碳复合材料。2.根据权利要求1所述的一种中间相碳微球-硅碳复合材料制备方法,其特征在于,所述中间型碳微球进行表面处理的过程包括内容如下:将所述中间相碳微球转移到等离子反应腔内,在入口端和出口端分别设置等离子源,其中入口端的等离子源为氧气和氩气混合气,体积比1:1~10,出口端等离子源为氨气和氩气混合气混合气,体积比1:1~10,反应室入口端的温度保持在200℃,由所述入口端至所述出口出口端温度逐渐升高,温升速率10~20℃/min,出口端的温度保持在500℃,得到氮掺杂氧化中间相碳微球。3.根据权利要求2所述的一种中间相碳微球-硅碳复合材料制备方法,其特征在于,所述磁控溅射法的实现过程包括内容如下:以纳米硅基材料为靶材,将所述氮掺杂氧化中间相碳微球转移到真空室中并作为基体,抽真空,压力控制到10-4
~10-3
pa;将所述基体加热到100~200℃,将ar气通入真空室,将所述靶材对所述基体进行轰击,得到硅氮共掺杂氧化中间相碳微球。4.根据权利要求3所述的一种中间相碳微球-硅碳复合材料制备方法,其特征在于,所述气相沉积法的实现包括步骤如下:将所述硅氮共掺杂氧化中间相碳微球通入三氯化硼混合气体,加热,保温,之后改通碳源气体,加热,保温,最后停止加热,降温,粉碎,得到硼掺杂无定形碳包覆的所述中间相碳微球-硅碳复合材料。5.根据权利要求4所述的一种中间相碳微球-硅碳复合材料制备方法,其特征在于,所述三氯化硼混合气体为三氯化硼和氩气的混合气体,三氯化硼和氩气的体积比1:1~10,流量10~100ml/min。6.根据权利要求4所述的一种中间相碳微球-硅碳复合材料制备方法,其特征在于,所述碳源气体为甲烷、乙烷、乙烯、乙炔中的一种或多种的组合,流量10~100ml/min。7.根据权利要求3所述的一种中间相碳微球-硅碳复合材料制备方法,其特征在于,所述纳米硅基材料为纳米si或纳米sio。8.根据权利要求4所述的一种中间相碳微球-硅碳复合材料制备方法,其特征在于,所述方法在气相沉积过程中,在通入三氯化硼混合气体之前,首先通入惰性气体排除管内空气;气相沉积过程完成后,降温在氩气气氛下进行。9.根据权利要求4或8所述的一种中间相碳微球-硅碳复合材料制备方法,其特征在于,所述三氯化硼混合气体通入过程中,温度保持在300~500℃,保温0.5~2h;所述碳源气体通入过程中,温度保持在700~1200℃,保温0.5~2h。10.一种中间相碳微球-硅碳复合材料,其特征在于,所述中间相碳微球-硅碳复合材料基于权利要求1-9任一方法制备。

技术总结
本发明提供了一种中间相碳微球-硅碳复合材料及其制备方法,所述方法的实现包括,对中间型碳微球进行表面处理,然后通过磁控溅射法在其表面沉积纳米硅,再通过气相沉积法沉积含有硼的碳源,得到所述中间相碳微球-硅碳复合材料。本发明利用中间相碳微球的球形结构降低硅基材料的膨胀,及其掺杂硼的无定形碳降低阻抗;同时采用磁控溅射法实现精确控制纳米硅的沉积量及其均匀性,并结合气相沉积法在其外表面无定形碳,避免硅基材料与电解液直接接触,提升存储性能及其降低产气。其制备出的中间相碳微球-硅碳复合材料具有膨胀低、首次效率高等特性。等特性。等特性。


技术研发人员:苏红报 苏方征
受保护的技术使用者:青岛新泰和纳米科技有限公司
技术研发日:2023.04.19
技术公布日:2023/8/4
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

飞机超市 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

相关推荐