一种改性钢渣基太阳能选择性吸收集储热陶瓷颗粒及其制备方法
未命名
08-29
阅读:129
评论:0

1.本发明涉及太阳能热发电领域,具体涉及一种改性钢渣基太阳能选择性吸收集储热陶瓷颗粒及其制备方法。
背景技术:
2.太阳能光热发电是以聚光太阳能作为热源,通过集热介质把太阳辐射能转化成热能,驱动汽轮机进行发电的技术,可以有效解决太阳能在时间、空间、强度上的不平衡问题,提升电力系统的调峰能力,降低电力生产成本,实现连续发电。在集储热介质中,固体陶瓷颗粒凭借成本低廉、技术简单、工作温度高等优点受到越来越多的关注。目前应用较广泛的有氧化铝基和碳化硅基陶瓷集储热材料,但存在辐射热损大、高温稳定性差、成本较高等问题,限制了其在太阳能热发电领域的进一步应用。
3.固体陶瓷颗粒的光学性质直接影响热发电系统的热电转换效率。增加固体颗粒的吸收率使其吸收更多太阳能,同时降低热发射率以减少颗粒辐射热损失,能够直接提高热发电系统的整体效率。对于提升固体颗粒的光学性能,目前的研究主要侧重于通过掺杂al、fe、cr、cu、ti等金属粉末和表面涂层的方法提高颗粒的太阳辐射吸收能力,但伴随而来的是红外波段发射率升高的问题。此外,太阳能集储热颗粒的高温热稳定性是影响颗粒集热器长期高效稳定运行的另一关键因素。研究人员通过使用炭黑、铁锰颜料、黑色尖晶石等物质涂覆自然矿物,以提高吸收率,但是热处理后均出现不同程度的涂层脱落、性能衰减等问题;国外carbo系列商用陶瓷支撑剂具有0.93的高吸收率,但1000℃保持192h之后,吸收性能仅剩0.84,出现明显衰减。除了固体颗粒的物理性质,成本是进行商业化推广必须考虑的又一关键因素。砂子由于取材广泛、成本低廉而受到一定的关注,但其热物理性能、光学性能较差;其他常见的候选颗粒如铝土矿、氧化铝和碳化硅均拥有良好的光学性能和热物理性能,但成本较高,阻碍了其进一步应用。
技术实现要素:
4.本发明的目的是提供一种改性钢渣基太阳能热发电用集储热陶瓷颗粒及其制备方法,所制陶瓷颗粒不仅工作温度高、机械强度大、工艺简单、成本低廉、绿色环保,而且光学性能优越,具有太阳辐射的选择性吸收性能和高温热稳定性。
5.为实现上述目的,本发明采用如下技术方案:一种改性钢渣基太阳能选择性吸收集储热陶瓷颗粒,按照质量百分比,其原料由以下组分组成:钢渣40-80wt%、三氧化二铝15-25wt%、三氧化二铁5-18wt%、二氧化锰0-7wt%、二氧化钛0-10wt%。
6.优选的,按照质量百分比,所述钢渣的组成为:caco
3 10-20wt%,sio
2 10-22wt%,fe2o32-5wt%,feo 10-22wt%,cao 40-60wt%,al2o34-16wt%,mno 0-4wt%,mgo 5-15wt%。
7.优选的,所述原料粒径均≤0.075mm。
8.优选的,所述三氧化二铝可由铝单质氧化或氢氧化铝或硝酸铝高温分解得到;所述三氧化二铁可由铁氧化物氧化还原,或由氢氧化铁或硝酸铁高温分解得到。
9.一种改性钢渣基太阳能选择性吸收集储热陶瓷颗粒的制备方法,包括如下步骤:步骤s1,称取原料粉末,并将其混合均匀;步骤s2,向步骤s1混合后的原料粉末喷洒清水或使用粘结剂,得到湿度为20%-45%的胚料;步骤s3,将步骤s2得到的胚料通过成型设备成型;步骤s4,将步骤s3成型后的胚料烧结,得到选择性吸收集储热陶瓷颗粒。
10.优选的,所述步骤s2中,粘结剂为聚乙烯醇或羧甲基纤维素,为采用固态或溶液的形态,粘结剂的固态含量为原料粉末含量的3-6wt%。
11.优选的,所述步骤s3中,胚料通过成型设备制成颗粒形状,或者块体或圆柱体、长方体、圆弧形等复杂形状。
12.所述步骤s3中,胚料通过成型设备制成块体或圆柱体、长方体、圆弧形时,压制压力为0.3-40mpa。
13.优选的,所述步骤s3中,胚料通过成型设备制成颗粒形状时,采用的成型设备为挤出滚圆机或锅式造粒机或回转窑造粒机,颗粒形态为圆形或椭圆形或圆棒形,粒径范围为0.2-2mm。
14.优选的,所述步骤s4中,烧结在空气气氛下进行,烧结程序为:升温速率3-8℃/min;最高温度点保持2-10h;最高温度点1200-1360℃;最后随炉冷却。
15.本发明的有益效果为:1、本发明的选择性吸收集储热陶瓷,钢渣含量高达66.0%,不仅有助于消纳炼钢废固,绿色环保,也降低了生产成本,其原材料成本比外国carbo商用支撑剂颗粒更低,有助于实现在太阳能热发电领域中的大规模应用。
16.2、本发明的选择性吸收集储热陶瓷颗粒具有选择性吸收性能,其平均吸收率达到93.0%,发射率仅有68.0%,实现了在高效集热的同时大幅度降低辐射热损,克服了太阳能集储热陶瓷高发射率和高吸收率并存的难题。
17.3、本发明的选择性吸收集储热陶瓷颗粒具有高温性能稳定的优点,制备的颗粒在1000℃高温马弗炉中保持120h,其高吸收和低发射的优良性能几乎保持不变。
附图说明
18.图1为本发明实施例1、2、3的样品外观照片;图2为本发明实施例1中挤出滚圆法制备选择性吸收集储热陶瓷颗粒的流程图;图3为本发明实施例1制备的选择性吸收集储热陶瓷颗粒的吸收率和发射率曲线;图4为本发明实施例1制备的陶瓷颗粒吸收率和发射率性能随热处理时间的变化柱状图。
实施方式
19.为了让本发明更加清晰、易于理解,下面结合具体实施例和附图进一步阐明本发明。应当理解,下面所描述的实施例仅用于解释和说明本发明,并不用于限制本发明。
实施例
20.本实施例中选择性吸收集储热陶瓷颗粒的原料成分如下表1所示:表1名称钢渣α-al2o3fe2o3mno2占比(wt%)66.723.36.73.3其中钢渣的化学成分如下表2所示:表2名称caco3sio2feo(cao)
12
(al2o3)7ca2sio4ca2al2sio7占比(wt%)15.37.227.05.934.310.3制备方法包括以下步骤:1、原料配比混合:将钢渣粉末过200目筛,其他原料粉末过600目筛,按质量配比称量,球磨1小时得到均匀粉料。
21.2、颗粒成型:向混合原料粉料中加入向混合原料粉料中加入清水,水的添加量为粉料总重的35%,充分混合搅拌使湿度均匀,投入挤出滚圆机中,使颗粒成型,得到生粒,其中挤出滚圆机使用1.0mm的孔板。
22.3、高温烧结:干燥后将生粒放进高温马弗炉,在空气气氛中煅烧,以4.5℃/min的升温速率升至1310℃,保温10h,随后随炉冷却。
23.经测试,制备得到的陶瓷颗粒吸收率为93.0%,发射率为68.0%,单颗粒破碎强度28.9n,在1000℃空气气氛下马弗炉中保温120小时后,吸收率变为93.2%,高吸收性能几乎不变,发射率为68.1%,单颗粒破碎强度26.2n,以上性能可满足热发电系统对太阳能的持续高效利用并降低维护成本。
24.如图3所示,实施例1制备的选择性吸收集储热陶瓷颗粒,在太阳辐照最强的0.28-1μm波段具有极高的吸收率,常温下光谱辐射能量高的8.0-12.0μm波段具有较低的发射率,从而实现在维持高吸收率的同时大幅度降低辐射热损失。
25.如图4所示,实施例1制备的选择性吸收集储热陶瓷颗粒,在1000℃高温环境下保持120h,其光学性能几乎不发生改变,其优异的高温稳定性不仅可以有效抵抗集热器能流密度不均所带来的的局部失效,还降低了维护成本,保证了热发电系统对太阳能的持续高效利用。
实施例
26.与实施例1不同的是,选择性吸收集储热陶瓷颗粒的成分如下表3所示,最高煅烧温度为1220℃。
27.表3名称钢渣α-al2o3fe2o3mno2tio2占比(wt%)62.515.66.39.46.2经测试,制备得到的陶瓷颗粒吸收率为92.7%,发射率为69.3%,单颗粒破碎强度48.5n,在1000℃空气气氛下马弗炉中保温82小时后,吸收率变为92.9%,发射率为69.3%,单颗粒破碎强度46.4n,可满足太阳能热发电系统对陶瓷材料的性能要求。
实施例
28.与实施例1不同的是,选择性吸收集储热陶瓷圆片的成型过程为:将球磨得到的均匀粉料经液压机压制成型,制成φ12.7
×
3mm的圆形胚体。
29.经测试,制备得到的陶瓷圆片吸收率为92%,发射率为68.2%,体积密度为3.1g/cm3,室温热导率为2.2w/(m.k) ,可满足太阳能热发电系统对陶瓷材料的性能要求。
30.以上所述是本发明的优选实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所做出的各种其他相应的任何修改、等同替换和改进,均应包含在本发明权利要求的保护范围内。
技术特征:
1.一种改性钢渣基太阳能选择性吸收集储热陶瓷颗粒,其特征在于,按照质量百分比,其原料由以下组分组成:钢渣40-80wt%、三氧化二铝15-25wt%、三氧化二铁5-18wt%、二氧化锰0-7wt%、二氧化钛0-10wt%。2.根据权利要求1所述的改性钢渣基太阳能选择性吸收集储热陶瓷颗粒,其特征在于,按照质量百分比,所述钢渣的组成为:caco
3 10-20wt%,sio
2 10-22wt%,fe2o
3 2-5wt%,feo 10-22wt%,cao 40-60wt%,al2o
3 4-16wt%,mno 0-4wt%,mgo 5-15wt%。3.根据权利要求1所述的改性钢渣基太阳能选择性吸收集储热陶瓷颗粒,其特征在于,所述原料粒径均≤0.075mm。4.根据权利要求1-3任一所述的改性钢渣基太阳能选择性吸收集储热陶瓷颗粒的制备方法,其特征在于,包括如下步骤:步骤s1,称取原料粉末,并将其混合均匀;步骤s2,向步骤s1混合后的原料粉末喷洒清水或使用粘结剂,得到湿度为20%-45%的胚料;步骤s3,将步骤s2得到的胚料通过成型设备成型;步骤s4,将步骤s3成型后的胚料烧结,得到选择性吸收集储热陶瓷颗粒。5.根据权利要求4所述的改性钢渣基太阳能选择性吸收集储热陶瓷颗粒的制备方法,其特征在于,所述步骤s2中,粘结剂为聚乙烯醇或羧甲基纤维素,为采用固态或溶液的形态,粘结剂的固态含量为原料粉末含量的3-6wt%。6.根据权利要求4所述的改性钢渣基太阳能选择性吸收集储热陶瓷颗粒的制备方法,其特征在于,所述步骤s3中,胚料通过成型设备制成颗粒形状,或者块体或圆柱体、长方体、圆弧形。7.根据权利要求6所述的改性钢渣基太阳能选择性吸收集储热陶瓷颗粒的制备方法,其特征在于,所述步骤s3中,胚料通过成型设备制成块体或圆柱体、长方体、圆弧形时,压制压力为0.3-40mpa。8.根据权利要求6所述的改性钢渣基太阳能选择性吸收集储热陶瓷颗粒的制备方法,其特征在于,所述步骤s3中,胚料通过成型设备制成颗粒形状时,采用的成型设备为挤出滚圆机或锅式造粒机或回转窑造粒机,颗粒形态为圆形或椭圆形或圆棒形,粒径范围为0.2-2mm。9.根据权利要求4所述的改性钢渣基太阳能选择性吸收集储热陶瓷颗粒的制备方法,其特征在于,所述步骤s4中,烧结在空气气氛下进行,烧结程序为:升温速率3-8℃/min;最高温度点保持2-10h;最高温度点1200-1360℃;最后随炉冷却。
技术总结
本发明公开了一种改性钢渣基太阳能选择性吸收集储热陶瓷颗粒及其制备方法,按照质量百分比,其原料由以下组分组成:钢渣40-80wt%、三氧化二铝15-25wt%、三氧化二铁5-18wt%、二氧化锰0-7wt%、二氧化钛0-10wt%。上述原料粉末经过混合均匀、成型、高温煅烧等工艺即可得到太阳能塔式热发电用集储热陶瓷颗粒。本发明制备的固体陶瓷颗粒在实现太阳辐射高效吸收的同时兼具红外波段低发射的特点,且高温下性能稳定、成本更低。成本更低。成本更低。
技术研发人员:杨理理 李冲 张津瑞 王刚
受保护的技术使用者:南京航空航天大学
技术研发日:2023.06.29
技术公布日:2023/8/28
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/