一种轨道车定位系统及方法与流程
未命名
09-01
阅读:120
评论:0

1.本技术涉及车辆技术领域,尤其涉及一种轨道车定位系统及方法。
背景技术:
2.随着城市地下空间的不断扩大,盾构隧道在工程建设中越来越受到重视。在盾构隧道的施工过程中,需要使用轨道车进行人员运输和物资搬运等工作。为了较好地监测轨道车的运行情况,需要对轨道车进行高精度的定位。
3.目前,为了对轨道车进行定位,主要采用里程表、gps等传统测量方法,然而,盾构隧道地下深度较大,光线较暗,结构复杂,这些方法受环境干扰大,从而导致轨道车的定位结果可靠度不高的问题。
4.因此,现有技术中在对轨道车进行定位的过程中,存在定位结果可靠度不高的问题。
技术实现要素:
5.有鉴于此,有必要提供一种轨道车定位系统及方法,用以解决现有技术中,在对轨道车进行定位的过程中,存在的定位结果可靠度不高的问题。
6.为了解决上述问题,本技术提供一种轨道车定位系统,包括:
7.盾构管片,盾构管片上设置有管片编号,任意相邻的盾构管片之间有环缝,盾构管片与轨道在预设距离范围内;
8.相机,设置在轨道车上,用于获取盾构管片图像;
9.数据处理模块,用于根据盾构管片图像确定管片编号和环缝直线,并基于管片编号和环缝直线对轨道车进行定位。
10.进一步地,盾构管片与轨道构成一环形结构,轨道车在轨道上运行;
11.盾构管片阵列铺设,且盾构管片为规则形状;
12.管片编号用于确定轨道车的位置区间;
13.环缝直线用于确定轨道车基于该管片的细化距离;
14.其中,任一管片编号都有唯一确定的位置区间信息与其对应。
15.为了解决上述问题,本技术还提供一种轨道车定位方法,包括:
16.获取盾构管片图像;
17.对盾构管片图像进行场景分割,得到管片编号图像和管片环缝图像;
18.根据管片编号图像,确定轨道车对应的管片编号,并根据管片编号,确定轨道车的位置区间;
19.根据管片环缝图像,确定轨道车对应的环缝直线,并根据环缝直线,确定轨道车基于管片的细化距离;
20.根据位置区间和细化距离,确定轨道车的位置。
21.进一步地,对盾构管片图像进行场景分割,得到管片编号图像和管片环缝图像,包
括:
22.通过sam模型对盾构管片图像进行场景分割,得到管片编号图像和管片环缝图像。
23.进一步地,根据管片编号图像,确定轨道车对应的管片编号,包括:
24.通过光学字符识别技术对管片编号图像进行字符识别,确定轨道车对应的管片编号。
25.进一步地,根据管片编号,确定轨道车的位置区间,包括:
26.获取管片编号位置对应表,其中,管片编号位置对应表中,任一管片编号信息都有唯一确定的位置区间信息与其对应;
27.基于管片编号位置对应表,确定管片编号对应的位置区间信息为轨道车的位置区间。
28.进一步地,根据管片环缝图像,确定轨道车对应的环缝直线,包括:
29.提取管片环缝图像中的环缝线;
30.对环缝线进行拟合直线处理,确定轨道车对应的环缝直线。
31.进一步地,根据环缝直线,确定轨道车基于管片的细化距离,包括:
32.对环缝直线进行坐标转化,得到环缝直线的世界坐标;
33.获取相机光心的世界坐标;
34.根据环缝直线的世界坐标和相机光心的世界坐标,基于最小距离公式,确定轨道车基于管片的细化距离。
35.进一步地,最小距离公式为:
36.d
x
=min(|x
w-xc|)
37.其中,d
x
为细化距离,xw为环缝直线的世界横坐标,pw=(xw,yw,zw)为环缝直线的世界坐标;xc为相机光心的世界横坐标,o=(xc,yc,zc)为相机光心的世界坐标。
38.进一步地,根据管片环缝图像,确定轨道车对应的环缝直线,并根据环缝直线,确定轨道车基于管片的细化距离,还包括:
39.设置模板掩膜和重叠率阈值;
40.基于重叠率计算公式,确定管片环缝图像和模板掩膜的重叠率;
41.当重叠率不小于重叠率阈值时,将细化距离归零。
42.本技术的有益效果是:本技术提供一种轨道车定位系统及方法,该系统包括:盾构管片,盾构管片上设置有管片编号,任意相邻的盾构管片之间有环缝,盾构管片与轨道在预设距离范围内;相机,设置在轨道车上,用于获取盾构管片图像;数据处理模块,用于根据盾构管片图像确定管片编号和环缝直线,并基于管片编号和环缝直线对轨道车进行定位;一方面,由于管片编号与位置对应,能够通过管片编号和环缝直线确定轨道车的定位;另一方面,在获取盾构管片图像以及对盾构管片图像进行数据处理的过程中,并不依赖于外部的信息交换,对轨道车所处的环境没有限制;因此,有效地保证了获取到的轨道车的定位结果的可靠度,从而能够更好地监测轨道车的运行情况。
附图说明
43.图1为本技术提供的轨道车定位系统一实施例的结构示意图;
44.图2为本发明提供的环形结构一实施例的实物图;
45.图3为本发明提供的盾构管片的环缝一实施例的实物图;
46.图4为本发明提供的轨道车定位方法一实施例的流程示意图;
47.图5为本发明提供的确定轨道车的位置区间一实施例的流程示意图;
48.图6为本发明提供的确定轨道车对应的环缝直线一实施例的流程示意图;
49.图7为本发明提供的确定轨道车基于管片的细化距离一实施例的流程示意图;
50.图8为本发明提供的修正细化距离一实施例的流程示意图。
具体实施方式
51.下面结合附图来具体描述本技术的优选实施例,其中,附图构成本技术一部分,并与本技术的实施例一起用于阐释本技术的原理,并非用于限定本技术的范围。
52.在陈述实施例之前,先对盾构管片、sam模型和重叠率进行阐述:
53.盾构管片是盾构施工的主要装配构件,是隧道的最内层屏障,承担着抵抗土层压力、地下水压力以及一些特殊荷载的作用。盾构管片是盾构法隧道的永久衬砌结构,盾构管片质量直接关系到隧道的整体质量和安全,影响隧道的防水性能及耐久性能。
54.sam模型建立了一个可以接受文本提示、基于海量数据训练而获得泛化能力的图像分割大模型。图像分割是计算机视觉中的一项重要任务,有助于识别和确认图像中的不同物体,把它们从背景中分离出来。
55.重叠率(iou,intersection over union),就是重合的概率。
56.目前,为了对轨道车进行定位,主要采用里程表、gps等传统测量方法,然而,盾构隧道地下深度较大,光线较暗,结构复杂,这些方法受环境干扰大,从而导致轨道车的定位结果可靠度不高的问题。
57.因此,现有技术中在对轨道车进行定位的过程中,存在定位结果可靠度不高的问题。
58.为了解决上述问题,本技术提供了一种轨道车定位系统及方法,以下分别进行详细说明。
59.如图1所示,图1为本技术提供的轨道车定位系统一实施例的结构示意图,轨道车定位系统100包括:
60.盾构管片101,盾构管片101上设置有管片编号,任意相邻的盾构管片101之间有环缝,盾构管片101与轨道在预设距离范围内;
61.相机102,设置在轨道车上,用于获取盾构管片101图像;
62.数据处理模块103,用于根据盾构管片图像确定管片编号和环缝直线,并基于管片编号和环缝直线对轨道车进行定位。
63.本实施例中,通过对盾构管片101进行编号,从而实现通过管片编号确定管片的位置;然后,在轨道车运行的过程中,通过相机102实时获取盾构管片图像,并由数据处理模块103对盾构管片图像进行数据处理,从而得到与盾构管片图像对应的位置信息,从而实现对轨道车进行定位。
64.本实施例中,一方面,由于管片编号与位置对应,能够通过管片编号和环缝直线确定轨道车的定位;另一方面,在获取盾构管片图像以及对盾构管片图像进行数据处理的过程中,并不依赖于外部的信息交换,对轨道车所处的环境没有限制;因此,有效地保证了获
取到的轨道车的定位结果的可靠度,从而能够更好地监测轨道车的运行情况。
65.需要说明的是,盾构管片与轨道构成一环形结构,轨道车在轨道上运行;
66.盾构管片阵列铺设,且盾构管片为规则形状;
67.管片编号用于确定轨道车的位置区间;
68.环缝直线用于确定轨道车基于该管片的细化距离;
69.其中,任一管片编号都有唯一确定的位置区间信息与其对应。
70.如图2所示,图2为本发明提供的环形结构一实施例的实物图,通过在轨道两侧和上方设置盾构管片,为轨道提供支撑保障,并且由于盾构管片是隧道的最内层屏障,因此,在轨道车运行的过程中,能够在轨道车上观测到盾构管片靠近轨道车的一侧的表面信息。
71.为了便于后续的数据处理,盾构管片上设置的管片编号是唯一确定的,从而实现在获取到管片编号时,就能对应精准地确定该盾构管片的位置。
72.另外,环缝均呈直线分布,即,盾构管片之间的连接处为规则的形状。如图3所示,图3为本发明提供的盾构管片的环缝一实施例的实物图,可以很清楚地观察到盾构管片之间连接处的缝隙。
73.在一具体实施例中,盾构管片宽度为固定的1.5m,从而实现通过盾构管片将轨道分为以1.5m为比对刻度的轨迹,即,通过识别到盾构管片上的管片编号,就能确定轨道车所在的位置区间,且精确度可以达到1.5m。
74.进一步地,为了提高轨道车的定位精度,通过识别出环缝直线,并确定当前轨道车与环缝的距离,从而提高轨道车的定位精度。即,实现以盾构管片间的环缝作为沿轨道轴向的坐标标尺,能够有效提高轨道车的定位精度。
75.为了解决上述问题,如图4所示,图4为本发明提供的轨道车定位方法一实施例的流程示意图,包括:
76.步骤s101:获取盾构管片图像;
77.步骤s102:对盾构管片图像进行场景分割,得到管片编号图像和管片环缝图像;
78.步骤s103:根据管片编号图像,确定轨道车对应的管片编号,并根据管片编号,确定轨道车的位置区间;
79.步骤s104:根据管片环缝图像,确定轨道车对应的环缝直线,并根据环缝直线,确定轨道车基于管片的细化距离;
80.步骤s105:根据位置区间和细化距离,确定轨道车的位置。
81.本实施例中,首先,获取盾构管片图像;然后,对盾构管片图像进行场景分割,得到管片编号图像和管片环缝图像;接下来,根据管片编号图像,确定轨道车对应的管片编号,并根据管片编号,确定轨道车的位置区间;根据管片环缝图像,确定轨道车对应的环缝直线,并根据环缝直线,确定轨道车基于管片的细化距离;最后,根据位置区间和细化距离,确定轨道车的位置。
82.本实施例中,通过将对轨道车进行定位的问题转化为对盾构管片图像进行数据识别的问题,从而实现通过有效利用轨道车的轨道附近铺设的盾构管片,对轨道进行细分,实现在确定盾构管片图像的数据后,就能确定轨道车的位置。由于在获取盾构管片图像以及对盾构管片图像进行数据处理的过程中,并不依赖于外部的信息交换,对轨道车所处的环境没有限制,因此,有效地保证了获取到的轨道车的定位结果的可靠度,从而能够更好地监
测轨道车的运行情况。
83.作为优选的实施例,在步骤s101中,为了获取盾构管片图像,在轨道车头部搭载rgb-d相机,并在地铁轨行区设置辅助光源,实现在轨道车运行的过程中,在地铁盾构隧道内壁面上采集图像。
84.进一步地,为了保证后续处理的准确性和可靠性,还需要对采集到的图像进行初步筛选,使盾构管片图像满足一定的空间分辨率和覆盖范围。
85.在一具体实施例中,需要剔除不包括完整管片编号和管片环缝的图像。
86.作为优选的实施例,在步骤s102中,为了得到管片编号图像和管片环缝图像,通过sam模型对盾构管片图像进行场景分割,得到管片编号图像和管片环缝图像。
87.sam模型利用深度学习算法对输入的盾构管片图像进行像素级别的分类,将每个像素点划分为不同的类别,通过掩模提取出目标物体或区域。需要说明的是,通过sam模型分割后得到类别图片及相应的元数据列表,其中包括分割后的管片编号图像和管片环缝图像。
88.作为优选的实施例,在步骤s103中,为了确定轨道车对应的管片编号,通过光学字符识别技术对管片编号图像进行字符识别,确定轨道车对应的管片编号。
89.管片编号通常会被印刷在混凝土管片的一个固定位置上,以保证施工效率和管片管理的便利性。
90.在一具体实施例中,通过对分割后的管片编号图像进行自动识别,管片编号图像的类别认为是管片编号区域,其中包含了完整的管片编号信息,因此,通过ocr技术对管片编号图像进行字符识别,确定管片编号图像中的数据信息,从而确定轨道车对应的管片编号。
91.进一步地,为了确定轨道车的位置区间,如图5所示,图5为本发明提供的确定轨道车的位置区间一实施例的流程示意图,包括:
92.步骤s131:获取管片编号位置对应表,其中,管片编号位置对应表中,任一管片编号信息都有唯一确定的位置区间信息与其对应;
93.步骤s132:基于管片编号位置对应表,确定管片编号对应的位置区间信息为轨道车的位置区间。
94.作为优选的实施例,在步骤s131中,由于轨道车的轨道靠近轨道车的一侧是由多块盾构管片拼接而成的,并且由于每一块盾构管片都是有编号的,因此,当轨道车的轨道修建好后,将每一块盾构管片当作是刻度尺的大刻度,对其进行定位编号,从而得到管片编号位置对应表,实现在获取到管片编号后,就能确定该盾构管片的位置。
95.进一步地,由于管片环缝形状特殊,环缝在图像中的高度与图片本身高度基本相同,基本可以认为分割后获得的元数据列表中bbox_h≈crop_box_h对应的图片内容为识别到的环缝,即,认为输入图片高度大致等于分割后得到的某一物体高度,从而能够根据管片环缝图像确定环缝区域,并获取相应的像素点信息。
96.作为优选的实施例,在步骤s104中,为了确定轨道车对应的环缝直线,如图6所示,图6为本发明提供的确定轨道车对应的环缝直线一实施例的流程示意图,包括:
97.步骤s141:提取管片环缝图像中的环缝线;
98.步骤s142:对环缝线进行拟合直线处理,确定轨道车对应的环缝直线。
99.作为优选的实施例,在步骤s142中,使用hough变换将环缝拟合为直线。其中,hough变换的原理为:在给定的图像上对每个像素点进行遍历,将满足极坐标公式的所有直线投影到极坐标系的平面上,从而得到一个参数空间(hough空间)。图像中的每个像素点都可以用它在x-y平面上的坐标(x,y)表示,对每个点进行极坐标转化后可得到该点所对应的所有直线在hough空间中的曲线。在找出了所有可能的曲线之后,利用lsd算法(line segment detector)来精确拟合曲线形状,并选取其中长度最大的线段作为环缝的表示直线。
100.通过将环缝拟合为直线,得到了长度最大的环缝直线,能够避免由于获取到的图像本身的精度不高导致环缝直线精度不高,数据处理的可靠度不高的问题。
101.进一步地,为了确定轨道车基于管片的细化距离,如图7所示,图7为本发明提供的确定轨道车基于管片的细化距离一实施例的流程示意图,包括:
102.步骤s241:对环缝直线进行坐标转化,得到环缝直线的世界坐标;
103.步骤s242:获取相机光心的世界坐标;
104.步骤s243:根据环缝直线的世界坐标和相机光心的世界坐标,基于最小距离公式,确定轨道车基于管片的细化距离。
105.作为优选的实施例,在步骤s241中,通过相机的内参、外参及深度信息,将拟合出的环缝直线上的点pi=(xi,yi)转化为世界坐标系下的点pw=(xw,yw,zw)。
106.其中,图像坐标转换为相机坐标系坐标的原理及公式的过程如下:
107.像素坐标p=(u,v),其中u和v分别表示图像坐标系下的横纵坐标,将像素坐标p转换为归一化坐标p
norm
=(x
norm
,y
norm
),公式为:
108.x
norm
=(u-c
x
)/f
x
109.y
norm
=(v-cy)/fy110.其中,c
x
和cy分别表示图像坐标系的主点坐标(即光轴与图像平面的交点),f
x
和fy分别表示相机的焦距,这些参数可以从相机的内参矩阵k中获取。
111.相机坐标系下的坐标转换为世界坐标系下的坐标的过程如下:
112.将相机坐标系下的坐标表示为一个三维向量pc=[xc,yc,zc],其中xc、yc、zc分别表示x、y、z方向上的坐标值。通过相机的内参矩阵k和外参矩阵[r|t],将pc转换为图像平面上的归一化坐标p
norm
=[u,v,1]
t
,公式为:
[0113]
p
norm
=k[r|t]pc[0114]
对p
norm
进行归一化处理,得到p
norm
'=[u',v',1]t,计算世界坐标系下的坐标pw,公式为:
[0115]
pw=t(p
norm
')
[0116]
其中,t是相机坐标系到世界坐标系的变换矩阵,可以通过外参矩阵[r|t]计算得到。具体而言,t的计算公式为:
[0117]
t=[rt,t4]
[0118]
其中,rt是旋转矩阵r和平移向量t按列拼接而成的3
×
4矩阵,t4是一个1
×
4的行向量[0,0,0,1]。
[0119]
作为优选的实施例,在步骤s243中,最小距离公式为:
[0120]dx
=min(|x
w-xc|)
[0121]
其中,d
x
为细化距离,xw为环缝直线的世界横坐标,pw=(xw,yw,zw)为环缝直线的世界坐标;xc为相机光心的世界横坐标,o=(xc,yc,zc)为相机光心的世界坐标。
[0122]
进一步地,由于轨道车刚好与环缝对齐时相机所采集到的环缝基本为一固定尺寸和形状,因此,为了提高根据管片环缝图像确定细化距离的可靠度,在得到管片环缝图像后,还可以根据管片环缝图像判定轨道车是否与环缝对齐,从而修正细化距离,如图8所示,图8为本发明提供的修正细化距离一实施例的流程示意图,包括:
[0123]
步骤s341:设置模板掩膜和重叠率阈值;
[0124]
步骤s342:基于重叠率计算公式,确定管片环缝图像和模板掩膜的重叠率;
[0125]
步骤s343:当重叠率不小于重叠率阈值时,将细化距离归零。
[0126]
本实施例中,通过对管片环缝图像与标准的模板掩膜进行比较,并基于重叠率判定轨道车是否与环缝对齐,从而实现对基于管片环缝图像计算得到的细化距离进行对齐修正,提高细化距离的可靠性。
[0127]
作为优选的实施例,在步骤s341中,轨道车刚好与环缝对齐时相机所采集到的环缝基本为一固定尺寸和形状,因此将该形状设置为模板掩膜。
[0128]
在一具体实施例中,先对轨道车和环缝进行标定,即,当轨道车停靠在轨道上时,获取相机所采集到的环缝图像,通过剔除掉不相关的部分,得到标准图像,即为模板掩膜。
[0129]
作为优选的实施例,在步骤342中,重叠率计算公式为:
[0130]
iou=交集面积/(掩膜1面积+掩膜2面积-交集面积)
[0131]
其中,iou为重叠率,交集面积指的是两个掩膜中非零像素共同覆盖的区域的面积,掩膜面积则是指掩膜中非零像素所覆盖的总面积。
[0132]
作为优选的实施例,在步骤s123中,重叠率阈值优选95%。
[0133]
在其他实施例中,还可以根据实际需要对重叠率阈值进行适应性调整。
[0134]
需要说明的是,由于盾构管片铺设在轨道车的左侧、右侧和上侧,从而在对管片环缝图像进行环缝识别的过程中,能够得到完整的环缝图形。需要说明的是,轨道车刚好与环缝对齐时相机所采集到的环缝图形基本为一固定尺寸和形状,因此,当管片环缝图像的重叠率达到重叠率阈值时,表示管片环缝图像中的环缝尺寸和形状达到了模板掩膜的环缝尺寸和形状,说明轨道车到达了与环缝对齐的位置,所以将细化距离归零。
[0135]
作为优选的实施例,在步骤s105中,在确定了位置区间和细化距离后,如图2所示,由于获取到的是轨道车与最长环缝之间的距离,因此,还需要对位置区间对应的具体位置边界值进行筛选,从而提高轨道车的位置的精度。
[0136]
在一具体实施例中,选取管片编号图像中编号字体最大的作为目标管片编号,并选择其远离轨道车一端作为目标位置标准;然后,将目标位置标准和细化距离相减,确定轨道车的精准位置。
[0137]
需要说明的是,细化距离是有方向的值,即,细化距离可能是负值,当轨道车超过最长环缝时,细化距离为正值;当轨道车未超过最长环缝时,细化距离为负值。
[0138]
通过上述技术方案,一方面,通过有效利用轨道已有的盾构管片,将每一盾构管片划分成刻度尺上的刻度,从而通过获取盾构管片的图像确定轨道车的位置;另一方面,在获取盾构管片图像以及对盾构管片图像进行数据处理的过程中,并不依赖于外部的信息交换,对轨道车所处的环境没有限制;因此,有效地保证了获取到的轨道车的定位结果的可靠
度,从而能够更好地监测轨道车的运行情况。另外,通过将对轨道车进行定位的问题转化为对盾构管片图像进行数据识别的问题,从而实现通过有效利用轨道车的轨道附近铺设的盾构管片,对轨道进行细分,实现在确定盾构管片图像的数据后,就能确定轨道车的位置。由于在获取盾构管片图像以及对盾构管片图像进行数据处理的过程中,并不依赖于外部的信息交换,对轨道车所处的环境没有限制,因此,有效地保证了获取到的轨道车的定位结果的可靠度,从而能够更好地监测轨道车的运行情况。
[0139]
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
技术特征:
1.一种轨道车定位系统,其特征在于,包括:盾构管片,所述盾构管片上设置有管片编号,任意相邻的所述盾构管片之间有环缝,所述盾构管片与轨道在预设距离范围内;相机,设置在轨道车上,用于获取盾构管片图像;数据处理模块,用于根据所述盾构管片图像确定所述管片编号和环缝直线,并基于所述管片编号和所述环缝直线对所述轨道车进行定位。2.根据权利要求1所述的轨道车定位系统,其特征在于,所述盾构管片与所述轨道构成一环形结构,所述轨道车在所述轨道上运行;所述盾构管片阵列铺设,且所述盾构管片为规则形状;所述管片编号用于确定所述轨道车的位置区间;所述环缝直线用于确定所述轨道车基于该管片的细化距离;其中,任一所述管片编号都有唯一确定的位置区间信息与其对应。3.一种基于权利要求1或2所述的轨道车定位系统的轨道车定位方法,其特征在于,包括:获取盾构管片图像;对所述盾构管片图像进行场景分割,得到管片编号图像和管片环缝图像;根据所述管片编号图像,确定轨道车对应的管片编号,并根据所述管片编号,确定所述轨道车的位置区间;根据所述管片环缝图像,确定所述轨道车对应的环缝直线,并根据所述环缝直线,确定所述轨道车基于管片的细化距离;根据所述位置区间和所述细化距离,确定所述轨道车的位置。4.根据权利要求3所述的轨道车定位方法,其特征在于,所述对所述盾构管片图像进行场景分割,得到管片编号图像和管片环缝图像,包括:通过sam模型对所述盾构管片图像进行场景分割,得到管片编号图像和管片环缝图像。5.根据权利要求3所述的轨道车定位方法,其特征在于,所述根据所述管片编号图像,确定轨道车对应的管片编号,包括:通过光学字符识别技术对所述管片编号图像进行字符识别,确定轨道车对应的管片编号。6.根据权利要求3所述的轨道车定位方法,其特征在于,所述根据所述管片编号,确定所述轨道车的位置区间,包括:获取管片编号位置对应表,其中,所述管片编号位置对应表包括任一所述管片编号的位置区间信息;基于所述管片编号位置对应表,确定所述管片编号对应的位置区间信息为所述轨道车的所述位置区间。7.根据权利要求3所述的轨道车定位方法,其特征在于,所述根据所述管片环缝图像,确定所述轨道车对应的环缝直线,包括:提取所述管片环缝图像中的环缝线;对所述环缝线进行拟合直线处理,确定所述轨道车对应的环缝直线。8.根据权利要求3所述的轨道车定位方法,其特征在于,所述根据所述环缝直线,确定
所述轨道车基于管片的细化距离,包括:对所述环缝直线进行坐标转化,得到所述环缝直线的世界坐标;获取相机光心的世界坐标;根据所述环缝直线的所述世界坐标和所述相机光心的所述世界坐标,基于最小距离公式,确定所述轨道车基于管片的细化距离。9.根据权利要求8所述的轨道车定位方法,其特征在于,所述最小距离公式为:d
x
=min(|x
w-x
c
|)其中,d
x
为所述细化距离,x
w
为所述环缝直线的世界横坐标,p
w
=(x
w
,y
w
,z
w
)为所述环缝直线的所述世界坐标;x
c
为所述相机光心的世界横坐标,o=(x
c
,y
c
,z
c
)为所述相机光心的所述世界坐标。10.根据权利要求3所述的轨道车定位方法,其特征在于,所述根据所述管片环缝图像,确定所述轨道车对应的环缝直线,并根据所述环缝直线,确定所述轨道车基于管片的细化距离,还包括:设置模板掩膜和重叠率阈值;基于重叠率计算公式,确定所述管片环缝图像和所述模板掩膜的重叠率;当所述重叠率不小于重叠率阈值时,将所述细化距离归零。
技术总结
本申请公开了一种轨道车定位系统及方法,该系统包括:盾构管片,盾构管片上设置有管片编号,任意相邻的盾构管片之间有环缝,盾构管片与轨道在预设距离范围内;相机,设置在轨道车上,用于获取盾构管片图像;数据处理模块,用于根据盾构管片图像确定管片编号和环缝直线,并基于管片编号和环缝直线对轨道车进行定位;一方面,由于管片编号与位置对应,能够通过管片编号和环缝直线确定轨道车的定位;另一方面,在获取盾构管片图像以及对盾构管片图像进行数据处理的过程中,并不依赖于外部的信息交换,对轨道车所处的环境没有限制;因此,有效地保证了获取到的轨道车的定位结果的可靠度,从而能够更好地监测轨道车的运行情况。而能够更好地监测轨道车的运行情况。而能够更好地监测轨道车的运行情况。
技术研发人员:汪咏琳 裴以军 朱紫威 梁潇 高泽洲 韩先峰
受保护的技术使用者:中建三局信息科技有限公司
技术研发日:2023.05.17
技术公布日:2023/8/24
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/