腺管极性紊乱程度参数的确定方法及装置与流程
未命名
09-09
阅读:89
评论:0

1.本技术主要涉及图像处理技术领域,具体涉及一种腺管极性紊乱程度参数的确定方法及装置。
背景技术:
2.现有技术主要依靠医生人工观察腺管病理图像来判断是否存在腺管极性紊乱的现象,无法准确确定腺管病理图像是否存在腺管极性紊乱。
3.也即,现有技术中腺管极性紊乱程度参数的确定方法准确度较低。
技术实现要素:
4.本技术提供一种腺管极性紊乱程度参数的确定方法及装置,旨在解决现有技术中腺管极性紊乱程度参数的确定方法准确度较低的问题。
5.第一方面,本技术提供一种腺管极性紊乱程度参数的确定方法,所述腺管极性紊乱程度参数的确定方法包括:获取腺管病理图像;将所述腺管病理图像输入预先训练的细胞分割模型,得到多个细胞分割区域;对所述细胞分割区域进行增殖细胞识别,得到属于增殖细胞的多个增殖细胞分割区域;将腺管病理图像分为在预设方向排布的多个条状图像块,所述腺管病理图像的图像高度轴线与所述预设方向平行;将各个条状图像块分别确定为目标条状图像块;获取目标条状图像块中各个增殖细胞分割区域的增殖细胞区域面积和增殖细胞区域形心;基于目标条状图像块中多个增殖细胞分割区域的增殖细胞区域面积对多个增殖细胞分割区域的增殖细胞区域形心进行加权平均,得到目标条状图像块中的等效形心;计算目标条状图像块中各个增殖细胞分割区域的增殖细胞区域形心与所述等效形心的区域形心距离,得到目标条状图像块中的多个区域形心距离;将目标条状图像块中的多个区域形心距离的标准差与多个区域形心距离的平均值之比确定为目标条状图像块的增殖细胞离散参数;获取目标条状图像块在所述图像高度轴线上的图像块投影长度;将目标条状图像块的增殖细胞离散参数与所述图像块投影长度的比值确定为目标条状图像块的增殖细胞离散程度梯度变化值,得到各个条状图像块的增殖细胞离散程度梯度变化值;将多个条状图像块的增殖细胞离散程度梯度变化值的平均值确定为增殖细胞离散程度梯度变化表征值;基于增殖细胞离散程度梯度变化表征值确定腺管极性紊乱程度参数。
6.可选地,所述基于增殖细胞离散程度梯度变化表征值确定腺管极性紊乱程度参数,包括:获取目标条状图像块中多个增殖细胞分割区域的细胞区域总面积;将目标条状图像块中的细胞区域总面积与图像块投影长度的比值确定为所述目标条状图像块的增殖细胞面积梯度变化值,得到各个条状图像块的增殖细胞面积梯度变化值;将各个条状图像块的增殖细胞面积梯度变化值中的最大值确定为增殖细胞面积梯度变化表征值;基于增殖细胞离散程度梯度变化表征值、增殖细胞面积梯度变化表征值确定腺管极性紊乱程度参数。
7.可选地,所述基于增殖细胞离散程度梯度变化表征值、增殖细胞面积梯度变化表征值确定腺管极性紊乱程度参数,包括:获取第一条状图像块和第二条状图像块,其中,所述第一条状图像块为所述预设方向上的最后一个条状图像块,所述目标条状图像块和所述第二条状图像块相邻且在所述预设方向上排布;获取第一图像组合块中的增殖细胞分割区域总数与细胞分割区域总数的第一比值,其中,所述第一图像组合块包括所述第一条状图像块、所述第二条状图像块以及所述第一条状图像块和所述第二条状图像块之间的条状图像块;获取第二图像组合块中的增殖细胞分割区域总数与细胞分割区域总数的第二比值,其中,所述第二图像组合块包括所述目标条状图像块、所述第一条状图像块以及所述目标条状图像块和所述第一条状图像块之间的条状图像块;若第一比值小于预设值且第二比值不小于所述预设值,则将所述第二图像组合块在图像高度轴线上的投影距离和所述腺管病理图像的图像高度的比值确定为增殖细胞深度指标;基于增殖细胞离散程度梯度变化表征值、增殖细胞面积梯度变化表征值以及增殖细胞深度指标确定腺管极性紊乱程度参数。
8.可选地,所述对所述细胞分割区域进行增殖细胞识别,得到属于增殖细胞的多个增殖细胞分割区域,包括:将以所述细胞分割区域的形心为圆心且包含所述细胞分割区域的最小圆确定为参考圆;将所述参考圆等分为多个扇形区域,得到多个扇形区域内的细胞分割子区域;获取所述扇形区域和对应的所述细胞分割子区域的面积差值,得到多个扇形区域对应的面积差值;基于多个所述细胞分割子区域的面积和多个所述面积差值确定细胞不规则指标;基于所述细胞不规则指标确定细胞类型判定指标;若细胞类型判定指标大于预设指标值,则确定所述细胞分割区域为属于增殖细胞的增殖细胞分割区域。
9.可选地,所述基于所述细胞不规则指标确定细胞类型判定指标,包括:将所述细胞分割区域内的图像输入细胞核分割模型,得到细胞核分割区域;
获取所述细胞分割区域的形心与所述细胞核分割区域的形心之间的核胞形心距离;获取所述细胞分割区域的最小外接矩形的对角线长度;将核胞形心距离和对角线长度的比值确定为细胞核偏心程度特征指标;基于所述细胞不规则指标、细胞核偏心程度特征指标确定细胞类型判定指标。
10.可选地,所述基于所述细胞不规则指标、细胞核偏心程度特征指标确定细胞类型判定指标,包括:将所述细胞核分割区域与所述细胞分割区域之间的面积比确定为核胞面积比特征指标;基于所述细胞核分割区域各个像素点的rgb像素值确定颜色特征指标;基于所述细胞不规则指标、细胞核偏心程度特征指标、核胞面积比特征指标以及颜色特征指标确定细胞类型判定指标。
11.可选地,所述将所述腺管病理图像输入预先训练的细胞分割模型,得到多个细胞分割区域,之前,包括:将所述腺管病理图像输入预先训练的管腔分割模型,得到多个管腔分割区域;利用zhang-suen细化算法提取各个所述管腔分割区域对应的第一管腔中心线;将各个所述第一管腔中心线分别拟合为直线,得到多个第二管腔中心线;计算多个所述第二管腔中心线在图像高度轴线上的投影距离之和,得到总高度投影距离;计算多个所述第二管腔中心线在图像宽度轴线上的投影距离之和,得到总宽度投影距离;若所述总高度投影距离大于所述宽度投影距离,则将所述腺管病理图像输入预先训练的细胞分割模型,得到多个细胞分割区域。
12.第二方面,本技术提供一种腺管极性紊乱程度参数的确定装置,所述腺管极性紊乱程度参数的确定装置包括:第一获取单元,用于获取腺管病理图像;分割单元,用于将所述腺管病理图像输入预先训练的细胞分割模型,得到多个细胞分割区域;识别单元,用于对所述细胞分割区域进行增殖细胞识别,得到属于增殖细胞的多个增殖细胞分割区域;划分单元,用于将腺管病理图像分为在预设方向排布的多个条状图像块,所述腺管病理图像的图像高度轴线与所述预设方向平行;第一确定单元,用于将各个条状图像块分别确定为目标条状图像块;第二获取单元,用于获取目标条状图像块中各个增殖细胞分割区域的增殖细胞区域面积和增殖细胞区域形心;加权平均单元,用于基于目标条状图像块中多个增殖细胞分割区域的增殖细胞区域面积对多个增殖细胞分割区域的增殖细胞区域形心进行加权平均,得到目标条状图像块中的等效形心;计算单元,用于计算目标条状图像块中各个增殖细胞分割区域的增殖细胞区域形
心与所述等效形心的区域形心距离,得到目标条状图像块中的多个区域形心距离;第二确定单元,用于将目标条状图像块中的多个区域形心距离的标准差与多个区域形心距离的平均值之比确定为目标条状图像块的增殖细胞离散参数;第三获取单元,用于获取目标条状图像块在所述图像高度轴线上的图像块投影长度;第三确定单元,用于将目标条状图像块的增殖细胞离散参数与所述图像块投影长度的比值确定为目标条状图像块的增殖细胞离散程度梯度变化值,得到各个条状图像块的增殖细胞离散程度梯度变化值;第四确定单元,用于将多个条状图像块的增殖细胞离散程度梯度变化值的平均值确定为增殖细胞离散程度梯度变化表征值;第五确定单元,用于基于增殖细胞离散程度梯度变化表征值确定腺管极性紊乱程度参数。
13.第三方面,本技术提供一种计算机设备,所述计算机设备包括:一个或多个处理器;存储器;以及一个或多个应用程序,其中所述一个或多个应用程序被存储于所述存储器中,并配置为由所述处理器执行以实现第一方面中任一项所述的腺管极性紊乱程度参数的确定方法。
14.第四方面,本技术提供一种计算机可读存储介质,所述计算机可读存储介质存储有多条指令,所述指令适于处理器进行加载,以执行第一方面中任一项所述的腺管极性紊乱程度参数的确定方法中的步骤。
15.本技术提供一种腺管极性紊乱程度参数的确定方法及装置,该腺管极性紊乱程度参数的确定方法包括:获取腺管病理图像;将腺管病理图像输入预先训练的细胞分割模型,得到多个细胞分割区域;对细胞分割区域进行增殖细胞识别,得到属于增殖细胞的多个增殖细胞分割区域;将腺管病理图像分为在预设方向排布的多个条状图像块,腺管病理图像的图像高度轴线与预设方向平行;将各个条状图像块分别确定为目标条状图像块;获取目标条状图像块中各个增殖细胞分割区域的增殖细胞区域面积和增殖细胞区域形心;基于目标条状图像块中多个增殖细胞分割区域的增殖细胞区域面积对多个增殖细胞分割区域的增殖细胞区域形心进行加权平均,得到目标条状图像块中的等效形心;计算目标条状图像块中各个增殖细胞分割区域的增殖细胞区域形心与等效形心的区域形心距离,得到目标条状图像块中的多个区域形心距离;将目标条状图像块中的多个区域形心距离的标准差与多个区域形心距离的平均值之比确定为目标条状图像块的增殖细胞离散参数;获取目标条状图像块在图像高度轴线上的图像块投影长度;将目标条状图像块的增殖细胞离散参数与图像块投影长度的比值确定为目标条状图像块的增殖细胞离散程度梯度变化值,得到各个条状图像块的增殖细胞离散程度梯度变化值;将多个条状图像块的增殖细胞离散程度梯度变化值的平均值确定为增殖细胞离散程度梯度变化表征值;基于增殖细胞离散程度梯度变化表征值确定腺管极性紊乱程度参数。本技术能够提高腺管极性紊乱程度参数的确定准确度。
附图说明
16.为了更清楚地说明本技术实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本技术的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
17.图1是本技术实施例提供的腺管极性紊乱程度参数的确定系统的场景示意图;图2是本技术实施例提供的腺管极性紊乱程度参数的确定方法一实施例的流程示意图;图3是本技术实施例提供的腺管极性紊乱程度参数的确定方法一实施例中腺管病理图像的示意图;图4是本技术实施例提供的腺管极性紊乱程度参数的确定方法一实施例中腺管病理图像分割后细胞分割区域和细胞核分割区域的示意图;图5是本技术实施例提供的腺管极性紊乱程度参数的确定方法一实施例中腺管病理图像分割后管腔分割区域的示意图;图6是本技术实施例提供的腺管极性紊乱程度参数的确定方法一实施例中其中一个管腔分割区域的示意图;图7是本技术实施例提供的腺管极性紊乱程度参数的确定方法一实施例中细胞分割区域被划分为多个扇形区域的示意图;图8是本技术实施例中提供的腺管极性紊乱程度参数的确定装置的一个实施例结构示意图;图9是本技术实施例中提供的计算机设备的一个实施例结构示意图。
具体实施方式
18.下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本技术一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。
19.在本技术的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本技术和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本技术的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。在本技术的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
20.在本技术中,“示例性”一词用来表示“用作例子、例证或说明”。本技术中被描述为“示例性”的任何实施例不一定被解释为比其它实施例更优选或更具优势。为了使本领域任何技术人员能够实现和使用本技术,给出了以下描述。在以下描述中,为了解释的目的而列出了细节。应当明白的是,本领域普通技术人员可以认识到,在不使用这些特定细节的情况
下也可以实现本技术。在其它实例中,不会对公知的结构和过程进行详细阐述,以避免不必要的细节使本技术的描述变得晦涩。因此,本技术并非旨在限于所示的实施例,而是与符合本技术所公开的原理和特征的最广范围相一致。
21.本技术实施例提供一种腺管极性紊乱程度参数的确定方法及装置,以下分别进行详细说明。
22.请参阅图1,图1为本技术实施例所提供的腺管极性紊乱程度参数的确定系统的场景示意图,该腺管极性紊乱程度参数的确定系统可以包括计算机设备100,计算机设备100中集成有腺管极性紊乱程度参数的确定装置。
23.本技术实施例中,该计算机设备100可以是独立的服务器,也可以是服务器组成的服务器网络或服务器集群,例如,本技术实施例中所描述的计算机设备100,其包括但不限于计算机、网络主机、单个网络服务器、多个网络服务器集或多个服务器构成的云服务器。其中,云服务器由基于云计算(cloud computing)的大量计算机或网络服务器构成。
24.本技术实施例中,上述的计算机设备100可以是一个通用计算机设备或者是一个专用计算机设备。在具体实现中计算机设备100可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,pda)、移动手机、平板电脑、无线终端设备、通信设备、嵌入式设备等,本实施例不限定计算机设备100的类型。
25.本领域技术人员可以理解,图1中示出的应用环境,仅仅是本技术方案的一种应用场景,并不构成对本技术方案应用场景的限定,其他的应用环境还可以包括比图1中所示更多或更少的计算机设备,例如图1中仅示出1个计算机设备,可以理解的,该腺管极性紊乱程度参数的确定系统还可以包括一个或多个可处理数据的其他计算机设备,具体此处不作限定。
26.另外,如图1所示,该腺管极性紊乱程度参数的确定系统还可以包括存储器200,用于存储数据。
27.需要说明的是,图1所示的腺管极性紊乱程度参数的确定系统的场景示意图仅仅是一个示例,本技术实施例描述的腺管极性紊乱程度参数的确定系统以及场景是为了更加清楚的说明本技术实施例的技术方案,并不构成对于本技术实施例提供的技术方案的限定,本领域普通技术人员可知,随着腺管极性紊乱程度参数的确定系统的演变和新业务场景的出现,本技术实施例提供的技术方案对于类似的技术问题,同样适用。
28.首先,本技术实施例中提供一种腺管极性紊乱程度参数的确定方法,腺管极性紊乱程度参数的确定方法包括:获取腺管病理图像;将所述腺管病理图像输入预先训练的细胞分割模型,得到多个细胞分割区域;对所述细胞分割区域进行增殖细胞识别,得到属于增殖细胞的多个增殖细胞分割区域;将腺管病理图像分为在预设方向排布的多个条状图像块,所述腺管病理图像的图像高度轴线与所述预设方向平行;将各个条状图像块分别确定为目标条状图像块;获取目标条状图像块中各个增殖细胞分割区域的增殖细胞区域面积和增殖细胞区域形心;基于目标条状图像块中多个增殖细胞分割区域的增殖细胞区域面积对多个增殖细胞分割区域的增殖细胞区域形心进行加权平均,得到目标条状图像块中的等效形心;计算目标条状图像块中各个增殖细胞分割区域的增殖细胞区域形心与所述等效形心的区域形心距离,得到目标条状图像块中的多个区域形心距离;将目标条状图像块中的多个区域形心距离的标准差与多个区域形心距离的平均值之比确定为目标条状图像块的增
殖细胞离散参数;获取目标条状图像块在所述图像高度轴线上的图像块投影长度;将目标条状图像块的增殖细胞离散参数与所述图像块投影长度的比值确定为目标条状图像块的增殖细胞离散程度梯度变化值,得到各个条状图像块的增殖细胞离散程度梯度变化值;将多个条状图像块的增殖细胞离散程度梯度变化值的平均值确定为增殖细胞离散程度梯度变化表征值;基于增殖细胞离散程度梯度变化表征值确定腺管极性紊乱程度参数。
29.如图2所示,图2是本技术实施例中腺管极性紊乱程度参数的确定方法的一个实施例流程示意图,该腺管极性紊乱程度参数的确定方法包括如下步骤s201~s213:s201、获取腺管病理图像。
30.本技术获取的腺管病理图像如图3所示。
31.s202、将腺管病理图像输入预先训练的细胞分割模型,得到多个细胞分割区域。
32.本技术实施例中,预先训练细胞分割模型,优先选择unet++,标签由专业病理医师对细胞边界进行勾勒。
33.如图4所示,将腺管病理图像输入预先训练的细胞分割模型,得到多个细胞分割区域11。
34.本技术实施例中,将腺管病理图像输入预先训练的细胞分割模型,得到多个细胞分割区域,之前,包括:(1)将腺管病理图像输入预先训练的管腔分割模型,得到多个管腔分割区域。
35.具体的,如图5所示,将腺管病理图像输入预先训练的管腔分割模型,得到n个管腔分割区域13。
36.本技术实施例中,预先训练管腔分割模型,优先选择unet++,标签由专业病理医师对管腔边界进行勾勒。
37.(2)利用zhang-suen细化算法提取各个管腔分割区域对应的第一管腔中心线。
38.(3)将各个第一管腔中心线分别拟合为直线,得到多个第二管腔中心线。
39.如图6所示,以其中一个管腔分割区域13为例,利用zhang-suen细化算法提取管腔分割区域13对应的第一管腔中心线,将第一管腔中心线拟合为直线,得到第二管腔中心线14。
40.具体的,以预设方向为y轴,与垂直预设方向的方向为x轴,建立直角坐标系。图像高度轴线为y轴,图像宽度轴线为x轴。
41.设直线方程为,并建立方差误差,i表示第一管腔中心线上有i个像素点。
42.对方差误差求导,得到,求解求导公式,得到,
其中,第二管腔中心线的直线方程为。
43.(4)计算多个第二管腔中心线在图像高度轴线上的投影距离之和,得到总高度投影距离。
44.其中,总高度投影距离的计算公式如下,其中,为第i条第二管腔中心线在图像高度轴线上的投影距离。
45.(5)计算多个第二管腔中心线在图像宽度轴线上的投影距离之和,得到总宽度投影距离。
46.其中,总宽度投影距离的计算公式如下,其中,为第i条第二管腔中心线在图像宽度轴线上的投影距离。
47.(6)若总高度投影距离大于宽度投影距离,则将腺管病理图像输入预先训练的细胞分割模型,得到多个细胞分割区域。
48.若总高度投影距离大于宽度投影距离,即,表明腺管开口部在y轴方向,将腺管病理图像输入预先训练的细胞分割模型,得到多个细胞分割区域。
49.s203、对细胞分割区域进行增殖细胞识别,得到属于增殖细胞的多个增殖细胞分割区域。
50.本技术实施例中,对细胞分割区域进行增殖细胞识别,得到属于增殖细胞的多个增殖细胞分割区域,包括:(1)将以细胞分割区域的形心为圆心且包含细胞分割区域的最小圆确定为参考圆。
51.如图7所示,将以细胞分割区域11的形心为圆心且包含细胞分割区域的最小圆确定为参考圆。
52.(2)将参考圆等分为多个扇形区域,得到多个扇形区域内的细胞分割子区域。
53.细胞分割子区域是细胞分割区域位于扇形区域内的部分。
54.(3)获取扇形区域和对应的细胞分割子区域的面积差值,得到多个扇形区域对应的面积差值。
55.具体的,扇形区域的数量为8个,当然也可以为其他数量。扇形区域和对应的细胞分割子区域的面积差值为如下公式,
其中,为参考圆的半径。
56.(4)基于多个细胞分割子区域的面积和多个面积差值确定细胞不规则指标。
57.具体的,细胞不规则指标得计算公式如下,(5)基于细胞不规则指标确定细胞类型判定指标。
58.在一个具体的实施例中,将细胞不规则指标确定为细胞类型判定指标f。
59.进一步的,根据计算细胞不规则指标同样的方式,计算细胞核不规则指标。
60.(6)若细胞类型判定指标大于预设指标值,则确定细胞分割区域为属于增殖细胞的增殖细胞分割区域。
61.其中,预设值为β。若细胞类型判定指标f大于预设值,则确定细胞分割区域为属于增殖细胞的增殖细胞分割区域。进而识别出属于增殖细胞的多个增殖细胞分割区域。
62.进一步的,基于细胞不规则指标确定细胞类型判定指标,可以包括:(1)将细胞分割区域内的图像输入细胞核分割模型,得到细胞核分割区域。
63.本技术实施例中,预先训练细胞核分割模型,优先选择unet++,标签由专业病理医师对细胞核边界进行勾勒。
64.(2)获取细胞分割区域的形心与细胞核分割区域的形心之间的核胞形心距离。
65.具体的,获取细胞分割区域的形心与细胞核分割区域的形心之间的核胞形心距离。
66.(3)获取细胞分割区域的最小外接矩形的对角线长度。
67.(4)将核胞形心距离和对角线长度的比值确定为细胞核偏心程度特征指标。
68.具体的,细胞核偏心程度特征指标的计算公式如下,,其中为细胞分割区域的最小外接矩形的宽和高。
69.(5)基于细胞不规则指标、细胞核偏心程度特征指标确定细胞类型判定指标。
70.在一个具体的实施例中,基于细胞不规则指标、细胞核偏心程度特征指标进行加权平均,得到细胞类型判定指标f。
71.在另一个具体的实施例中,基于细胞不规则指标、细胞核偏心程度特征指标确定细胞类型判定指标,包括:(1)将细胞核分割区域与细胞分割区域之间的面积比确定为核胞面积比特征指标。
72.具体的,核胞面积比特征指标的计算公式如下,其中,细胞分割区域的面积为,细胞核分割区域的面积为。
73.(2)基于细胞核分割区域各个像素点的rgb像素值确定颜色特征指标。
74.具体的,通过pil自带的getcolors()方法获取细胞颜色特征列表,并计算颜色特征指标,其中,为第i个像素点的红色像素值,为第i个像素点的蓝色像素值,为第i个像素点的绿色像素值。
75.(3)基于细胞不规则指标、细胞核偏心程度特征指标、核胞面积比特征指标以及颜色特征指标确定细胞类型判定指标。
76.在一个具体的实施例中,基于细胞不规则指标、细胞核偏心程度特征指标、核胞面积比特征指标、细胞核不规则指标、颜色特征指标进行加权平均,得到细胞类型判定指标f。
77.s204、将腺管病理图像分为在预设方向排布的多个条状图像块。
78.其中,预设方向为腺管病理图像从下向上的方向,图像高度轴线与预设方向平行。例如,将腺管病理图像分为在预设方向排布的q个条状图像块。
79.s205、将各个条状图像块分别确定为目标条状图像块。
80.s206、获取目标条状图像块中各个增殖细胞分割区域的增殖细胞区域面积和增殖细胞区域形心。
81.具体的,获取目标条状图像块中各个增殖细胞分割区域的增殖细胞区域面积和增殖细胞区域形心。
82.s207、基于目标条状图像块中多个增殖细胞分割区域的增殖细胞区域面积对多个增殖细胞分割区域的增殖细胞区域形心进行加权平均,得到目标条状图像块中的等效形心。
83.具体的,记目标条状图像块中的等效形心p的坐标为,p的坐标计算公式如下,
其中,为增殖细胞区域形心的坐标,为目标条状图像块中各个增殖细胞分割区域的增殖细胞区域面积。
84.s208、计算目标条状图像块中各个增殖细胞分割区域的增殖细胞区域形心与等效形心的区域形心距离,得到目标条状图像块中的多个区域形心距离。
85.具体的,目标条状图像块中的各个区域形心距离的计算公式如下,s209、将目标条状图像块中的多个区域形心距离的标准差与多个区域形心距离的平均值之比确定为目标条状图像块的增殖细胞离散参数。
86.具体的,目标条状图像块的增殖细胞离散参数的计算公式如下,s210、获取目标条状图像块在图像高度轴线上的图像块投影长度。
87.s211、将目标条状图像块的增殖细胞离散参数与图像块投影长度的比值确定为目标条状图像块的增殖细胞离散程度梯度变化值,得到各个条状图像块的增殖细胞离散程度梯度变化值。
88.具体的,目标条状图像块的增殖细胞离散程度梯度变化值的计算公式如下,其中,为目标条状图像块的增殖细胞离散参数,为目标条状图像块在图像高度轴线上的图像块投影长度。
89.s212、将多个条状图像块的增殖细胞离散程度梯度变化值的平均值确定为增殖细胞离散程度梯度变化表征值。
90.具体的,增殖细胞离散程度梯度变化表征值的计算公式如下,s213、基于增殖细胞离散程度梯度变化表征值确定腺管极性紊乱程度参数。
91.在一个具体的实施例中,将增殖细胞离散程度梯度变化表征值确定为腺管极性紊乱程度参数。
92.在另一个具体的实施例中,基于增殖细胞离散程度梯度变化表征值确定腺管极性紊乱程度参数,包括:(1)获取目标条状图像块中多个增殖细胞分割区域的细胞区域总面积。
93.具体的,目标条状图像块中多个增殖细胞分割区域的细胞区域总面积为。
94.(2)将目标条状图像块中的细胞区域总面积与图像块投影长度的比值确定为目标条状图像块的增殖细胞面积梯度变化值,得到各个条状图像块的增殖细胞面积梯度变化
值。
95.具体的,增殖细胞面积梯度变化值的计算公式如下,(3)将各个条状图像块的增殖细胞面积梯度变化值中的最大值确定为增殖细胞面积梯度变化表征值。
96.具体的,增殖细胞面积梯度变化表征值的计算公式如下,(4)基于增殖细胞离散程度梯度变化表征值、增殖细胞面积梯度变化表征值确定腺管极性紊乱程度参数。
97.在一个具体的实施例中,对增殖细胞离散程度梯度变化表征值、增殖细胞面积梯度变化表征值进行加权平均,得到腺管极性紊乱程度参数。
98.在另一个具体的实施例中,基于增殖细胞离散程度梯度变化表征值、增殖细胞面积梯度变化表征值确定腺管极性紊乱程度参数,包括:(1)获取第一条状图像块和第二条状图像块,其中,第一条状图像块为预设方向上的最后一个条状图像块,目标条状图像块和第二条状图像块相邻且在预设方向上排布。
99.第一条状图像块靠近腺管开口,第二条状图像块为目标条状图像块上方的一个条状图像块。
100.(2)获取第一图像组合块中的增殖细胞分割区域总数与细胞分割区域总数的第一比值,其中,第一图像组合块包括第一条状图像块、第二条状图像块以及第一条状图像块和第二条状图像块之间的条状图像块。
101.(3)获取第二图像组合块中的增殖细胞分割区域总数与细胞分割区域总数的第二比值,其中,第二图像组合块包括目标条状图像块、第一条状图像块以及目标条状图像块和第一条状图像块之间的条状图像块。
102.(4)若第一比值小于预设值且第二比值不小于预设值,则将第二图像组合块在图像高度轴线上的投影距离和腺管病理图像的图像高度的比值确定为增殖细胞深度指标。
103.具体的,增殖细胞深度指标的计算公式如下,其中,第二图像组合块在图像高度轴线上的投影距离为,腺管病理图像的图像高度为l。
104.(5)基于增殖细胞离散程度梯度变化表征值、增殖细胞面积梯度变化表征值以及增殖细胞深度指标确定腺管极性紊乱程度参数。
105.在一个具体的实施例中,对增殖细胞离散程度梯度变化表征值、增殖细胞面积梯度变化表征值、增殖细胞深度指标进行加权平均,得到腺管极性紊乱程度参数。
106.具体的,对进行加权平均,得到腺管极性紊乱程度参数,腺管极
性紊乱程度参数的计算公式如下,,其中,为增殖细胞深度指标、增殖细胞面积梯度变化表征值、增殖细胞离散程度梯度变化表征值的权重系数,通过训练机器学习方法如决策树、随机森林等机器学习模型得到。
107.进一步的,判断腺管极性紊乱程度参数是否大于预设阈值,若腺管极性紊乱程度参数大于预设阈值,则判定腺管有极性;若腺管极性紊乱程度参数不大于预设阈值,则判定腺管无极性。
108.为了更好实施本技术实施例中腺管极性紊乱程度参数的确定方法,在腺管极性紊乱程度参数的确定方法基础之上,本技术实施例中还提供一种腺管极性紊乱程度参数的确定装置,如图8所示,腺管极性紊乱程度参数的确定装置300包括:第一获取单元301,用于获取腺管病理图像;分割单元302,用于将所述腺管病理图像输入预先训练的细胞分割模型,得到多个细胞分割区域;识别单元303,用于对所述细胞分割区域进行增殖细胞识别,得到属于增殖细胞的多个增殖细胞分割区域;划分单元304,用于将腺管病理图像分为在预设方向排布的多个条状图像块,所述腺管病理图像的图像高度轴线与所述预设方向平行;第一确定单元305,用于将各个条状图像块分别确定为目标条状图像块;第二获取单元306,用于获取目标条状图像块中各个增殖细胞分割区域的增殖细胞区域面积和增殖细胞区域形心;加权平均单元307,用于基于目标条状图像块中多个增殖细胞分割区域的增殖细胞区域面积对多个增殖细胞分割区域的增殖细胞区域形心进行加权平均,得到目标条状图像块中的等效形心;计算单元308,用于计算目标条状图像块中各个增殖细胞分割区域的增殖细胞区域形心与所述等效形心的区域形心距离,得到目标条状图像块中的多个区域形心距离;第二确定单元309,用于将目标条状图像块中的多个区域形心距离的标准差与多个区域形心距离的平均值之比确定为目标条状图像块的增殖细胞离散参数;第三获取单元310,用于获取目标条状图像块在所述图像高度轴线上的图像块投影长度;第三确定单元311,用于将目标条状图像块的增殖细胞离散参数与所述图像块投影长度的比值确定为目标条状图像块的增殖细胞离散程度梯度变化值,得到各个条状图像块的增殖细胞离散程度梯度变化值;第四确定单元312,用于将多个条状图像块的增殖细胞离散程度梯度变化值的平均值确定为增殖细胞离散程度梯度变化表征值;第五确定单元313,用于基于增殖细胞离散程度梯度变化表征值确定腺管极性紊乱程度参数。
109.本技术实施例还提供一种计算机设备,其集成了本技术实施例所提供的任一种腺管极性紊乱程度参数的确定装置,计算机设备包括:一个或多个处理器;存储器;以及一个或多个应用程序,其中一个或多个应用程序被存储于存储器中,并配置为由处理器执行上述腺管极性紊乱程度参数的确定方法实施例中任一实施例中的腺管极性紊乱程度参数的确定方法中的步骤。
110.如图9所示,其示出了本技术实施例所涉及的计算机设备的结构示意图,具体来讲:该计算机设备可以包括一个或者一个以上处理核心的处理器401、一个或一个以上计算机可读存储介质的存储器402、电源403和输入单元404等部件。本领域技术人员可以理解,图中示出的计算机设备结构并不构成对计算机设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:处理器401是该计算机设备的控制中心,利用各种接口和线路连接整个计算机设备的各个部分,通过运行或执行存储在存储器402内的软件程序和/或模块,以及调用存储在存储器402内的数据,执行计算机设备的各种功能和处理数据,从而对计算机设备进行整体监控。可选的,处理器401可包括一个或多个处理核心;处理器401可以是中央处理单元(central processing unit,cpu),还可以是其他通用处理器、数字信号处理器(digital signal processor,dsp)、专用集成电路(application specific integrated circuit,asic)、现成可编程门阵列(field-programmable gate array,fpga)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,优选的,处理器401可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器401中。
111.存储器402可用于存储软件程序以及模块,处理器401通过运行存储在存储器402的软件程序以及模块,从而执行各种功能应用以及数据处理。存储器402可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据计算机设备的使用所创建的数据等。此外,存储器402可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。相应地,存储器402还可以包括存储器控制器,以提供处理器401对存储器402的访问。
112.计算机设备还包括给各个部件供电的电源403,优选的,电源403可以通过电源管理系统与处理器401逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。电源403还可以包括一个或一个以上的直流或交流电源、再充电系统、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。
113.该计算机设备还可包括输入单元404,该输入单元404可用于接收输入的数字或字符信息,以及产生与用户设置以及功能控制有关的键盘、鼠标、操作杆、光学或者轨迹球信号输入。
114.尽管未示出,计算机设备还可以包括显示单元等,在此不再赘述。具体在本实施例
中,计算机设备中的处理器401会按照如下的指令,将一个或一个以上的应用程序的进程对应的可执行文件加载到存储器402中,并由处理器401来运行存储在存储器402中的应用程序,从而实现各种功能,如下:获取腺管病理图像;将所述腺管病理图像输入预先训练的细胞分割模型,得到多个细胞分割区域;对所述细胞分割区域进行增殖细胞识别,得到属于增殖细胞的多个增殖细胞分割区域;将腺管病理图像分为在预设方向排布的多个条状图像块,所述腺管病理图像的图像高度轴线与所述预设方向平行;将各个条状图像块分别确定为目标条状图像块;获取目标条状图像块中各个增殖细胞分割区域的增殖细胞区域面积和增殖细胞区域形心;基于目标条状图像块中多个增殖细胞分割区域的增殖细胞区域面积对多个增殖细胞分割区域的增殖细胞区域形心进行加权平均,得到目标条状图像块中的等效形心;计算目标条状图像块中各个增殖细胞分割区域的增殖细胞区域形心与所述等效形心的区域形心距离,得到目标条状图像块中的多个区域形心距离;将目标条状图像块中的多个区域形心距离的标准差与多个区域形心距离的平均值之比确定为目标条状图像块的增殖细胞离散参数;获取目标条状图像块在所述图像高度轴线上的图像块投影长度;将目标条状图像块的增殖细胞离散参数与所述图像块投影长度的比值确定为目标条状图像块的增殖细胞离散程度梯度变化值,得到各个条状图像块的增殖细胞离散程度梯度变化值;将多个条状图像块的增殖细胞离散程度梯度变化值的平均值确定为增殖细胞离散程度梯度变化表征值;基于增殖细胞离散程度梯度变化表征值确定腺管极性紊乱程度参数。
115.本领域普通技术人员可以理解,上述实施例的各种方法中的全部或部分步骤可以通过指令来完成,或通过指令控制相关的硬件来完成,该指令可以存储于一计算机可读存储介质中,并由处理器进行加载和执行。
116.为此,本技术实施例提供一种计算机可读存储介质,该存储介质可以包括:只读存储器(rom,read only memory)、随机存取记忆体(ram,random access memory)、磁盘或光盘等。其上存储有计算机程序,计算机程序被处理器进行加载,以执行本技术实施例所提供的任一种腺管极性紊乱程度参数的确定方法中的步骤。例如,计算机程序被处理器进行加载可以执行如下步骤:获取腺管病理图像;将所述腺管病理图像输入预先训练的细胞分割模型,得到多个细胞分割区域;对所述细胞分割区域进行增殖细胞识别,得到属于增殖细胞的多个增殖细胞分割区域;将腺管病理图像分为在预设方向排布的多个条状图像块,所述腺管病理图像的图像高度轴线与所述预设方向平行;将各个条状图像块分别确定为目标条状图像块;获取目标条状图像块中各个增殖细胞分割区域的增殖细胞区域面积和增殖细胞区域形心;基于目标条状图像块中多个增殖细胞分割区域的增殖细胞区域面积对多个增殖细胞分割区域的增殖细胞区域形心进行加权平均,得到目标条状图像块中的等效形心;计算目标条状图像块中各个增殖细胞分割区域的增殖细胞区域形心与所述等效形心的区域形心距离,得到目标条状图像块中的多个区域形心距离;将目标条状图像块中的多个区域形心距离的标准差与多个区域形心距离的平均值之比确定为目标条状图像块的增殖细胞离散参数;获取目标条状图像块在所述图像高度轴线上的图像块投影长度;将目标条状图像块的增殖细胞离散参数与所述图像块投影长度的比值确定为目标条状图像块的增殖细胞离散程度梯度变化值,得到各个条状图像块的增殖细胞离散程度梯度变化值;将多个条状图像块的增
殖细胞离散程度梯度变化值的平均值确定为增殖细胞离散程度梯度变化表征值;基于增殖细胞离散程度梯度变化表征值确定腺管极性紊乱程度参数。
117.在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见上文针对其他实施例的详细描述,此处不再赘述。
118.具体实施时,以上各个单元或结构可以作为独立的实体来实现,也可以进行任意组合,作为同一或若干个实体来实现,以上各个单元或结构的具体实施可参见前面的方法实施例,在此不再赘述。
119.以上各个操作的具体实施可参见前面的实施例,在此不再赘述。
120.以上对本技术实施例所提供的一种腺管极性紊乱程度参数的确定方法及装置进行了详细介绍,本文中应用了具体个例对本技术的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本技术的方法及其核心思想;同时,对于本领域的技术人员,依据本技术的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本技术的限制。
技术特征:
1.一种腺管极性紊乱程度参数的确定方法,其特征在于,所述腺管极性紊乱程度参数的确定方法包括:获取腺管病理图像;将所述腺管病理图像输入预先训练的细胞分割模型,得到多个细胞分割区域;对所述细胞分割区域进行增殖细胞识别,得到属于增殖细胞的多个增殖细胞分割区域;将腺管病理图像分为在预设方向排布的多个条状图像块,所述腺管病理图像的图像高度轴线与所述预设方向平行;将各个条状图像块分别确定为目标条状图像块;获取目标条状图像块中各个增殖细胞分割区域的增殖细胞区域面积和增殖细胞区域形心;基于目标条状图像块中多个增殖细胞分割区域的增殖细胞区域面积对多个增殖细胞分割区域的增殖细胞区域形心进行加权平均,得到目标条状图像块中的等效形心;计算目标条状图像块中各个增殖细胞分割区域的增殖细胞区域形心与所述等效形心的区域形心距离,得到目标条状图像块中的多个区域形心距离;将目标条状图像块中的多个区域形心距离的标准差与多个区域形心距离的平均值之比确定为目标条状图像块的增殖细胞离散参数;获取目标条状图像块在所述图像高度轴线上的图像块投影长度;将目标条状图像块的增殖细胞离散参数与所述图像块投影长度的比值确定为目标条状图像块的增殖细胞离散程度梯度变化值,得到各个条状图像块的增殖细胞离散程度梯度变化值;将多个条状图像块的增殖细胞离散程度梯度变化值的平均值确定为增殖细胞离散程度梯度变化表征值;基于增殖细胞离散程度梯度变化表征值确定腺管极性紊乱程度参数。2.根据权利要求1所述的腺管极性紊乱程度参数的确定方法,其特征在于,所述基于增殖细胞离散程度梯度变化表征值确定腺管极性紊乱程度参数,包括:获取目标条状图像块中多个增殖细胞分割区域的细胞区域总面积;将目标条状图像块中的细胞区域总面积与图像块投影长度的比值确定为所述目标条状图像块的增殖细胞面积梯度变化值,得到各个条状图像块的增殖细胞面积梯度变化值;将各个条状图像块的增殖细胞面积梯度变化值中的最大值确定为增殖细胞面积梯度变化表征值;基于增殖细胞离散程度梯度变化表征值、增殖细胞面积梯度变化表征值确定腺管极性紊乱程度参数。3.根据权利要求2所述的腺管极性紊乱程度参数的确定方法,其特征在于,所述基于增殖细胞离散程度梯度变化表征值、增殖细胞面积梯度变化表征值确定腺管极性紊乱程度参数,包括:获取第一条状图像块和第二条状图像块,其中,所述第一条状图像块为所述预设方向上的最后一个条状图像块,所述目标条状图像块和所述第二条状图像块相邻且在所述预设方向上排布;
获取第一图像组合块中的增殖细胞分割区域总数与细胞分割区域总数的第一比值,其中,所述第一图像组合块包括所述第一条状图像块、所述第二条状图像块以及所述第一条状图像块和所述第二条状图像块之间的条状图像块;获取第二图像组合块中的增殖细胞分割区域总数与细胞分割区域总数的第二比值,其中,所述第二图像组合块包括所述目标条状图像块、所述第一条状图像块以及所述目标条状图像块和所述第一条状图像块之间的条状图像块;若第一比值小于预设值且第二比值不小于所述预设值,则将所述第二图像组合块在图像高度轴线上的投影距离和所述腺管病理图像的图像高度的比值确定为增殖细胞深度指标;基于增殖细胞离散程度梯度变化表征值、增殖细胞面积梯度变化表征值以及增殖细胞深度指标确定腺管极性紊乱程度参数。4.根据权利要求1所述的腺管极性紊乱程度参数的确定方法,其特征在于,所述对所述细胞分割区域进行增殖细胞识别,得到属于增殖细胞的多个增殖细胞分割区域,包括:将以所述细胞分割区域的形心为圆心且包含所述细胞分割区域的最小圆确定为参考圆;将所述参考圆等分为多个扇形区域,得到多个扇形区域内的细胞分割子区域;获取所述扇形区域和对应的所述细胞分割子区域的面积差值,得到多个扇形区域对应的面积差值;基于多个所述细胞分割子区域的面积和多个所述面积差值确定细胞不规则指标;基于所述细胞不规则指标确定细胞类型判定指标;若细胞类型判定指标大于预设指标值,则确定所述细胞分割区域为属于增殖细胞的增殖细胞分割区域。5.根据权利要求4所述的腺管极性紊乱程度参数的确定方法,其特征在于,所述基于所述细胞不规则指标确定细胞类型判定指标,包括:将所述细胞分割区域内的图像输入细胞核分割模型,得到细胞核分割区域;获取所述细胞分割区域的形心与所述细胞核分割区域的形心之间的核胞形心距离;获取所述细胞分割区域的最小外接矩形的对角线长度;将核胞形心距离和对角线长度的比值确定为细胞核偏心程度特征指标;基于所述细胞不规则指标、细胞核偏心程度特征指标确定细胞类型判定指标。6.根据权利要求5所述的腺管极性紊乱程度参数的确定方法,其特征在于,所述基于所述细胞不规则指标、细胞核偏心程度特征指标确定细胞类型判定指标,包括:将所述细胞核分割区域与所述细胞分割区域之间的面积比确定为核胞面积比特征指标;基于所述细胞核分割区域各个像素点的rgb像素值确定颜色特征指标;基于所述细胞不规则指标、细胞核偏心程度特征指标、核胞面积比特征指标以及颜色特征指标确定细胞类型判定指标。7.根据权利要求1所述的腺管极性紊乱程度参数的确定方法,其特征在于,所述将所述腺管病理图像输入预先训练的细胞分割模型,得到多个细胞分割区域,之前,包括:将所述腺管病理图像输入预先训练的管腔分割模型,得到多个管腔分割区域;
利用zhang-suen细化算法提取各个所述管腔分割区域对应的第一管腔中心线;将各个所述第一管腔中心线分别拟合为直线,得到多个第二管腔中心线;计算多个所述第二管腔中心线在图像高度轴线上的投影距离之和,得到总高度投影距离;计算多个所述第二管腔中心线在图像宽度轴线上的投影距离之和,得到总宽度投影距离;若所述总高度投影距离大于所述宽度投影距离,则将所述腺管病理图像输入预先训练的细胞分割模型,得到多个细胞分割区域。8.一种腺管极性紊乱程度参数的确定装置,其特征在于,所述腺管极性紊乱程度参数的确定装置包括:第一获取单元,用于获取腺管病理图像;分割单元,用于将所述腺管病理图像输入预先训练的细胞分割模型,得到多个细胞分割区域;识别单元,用于对所述细胞分割区域进行增殖细胞识别,得到属于增殖细胞的多个增殖细胞分割区域;划分单元,用于将腺管病理图像分为在预设方向排布的多个条状图像块,所述腺管病理图像的图像高度轴线与所述预设方向平行;第一确定单元,用于将各个条状图像块分别确定为目标条状图像块;第二获取单元,用于获取目标条状图像块中各个增殖细胞分割区域的增殖细胞区域面积和增殖细胞区域形心;加权平均单元,用于基于目标条状图像块中多个增殖细胞分割区域的增殖细胞区域面积对多个增殖细胞分割区域的增殖细胞区域形心进行加权平均,得到目标条状图像块中的等效形心;计算单元,用于计算目标条状图像块中各个增殖细胞分割区域的增殖细胞区域形心与所述等效形心的区域形心距离,得到目标条状图像块中的多个区域形心距离;第二确定单元,用于将目标条状图像块中的多个区域形心距离的标准差与多个区域形心距离的平均值之比确定为目标条状图像块的增殖细胞离散参数;第三获取单元,用于获取目标条状图像块在所述图像高度轴线上的图像块投影长度;第三确定单元,用于将目标条状图像块的增殖细胞离散参数与所述图像块投影长度的比值确定为目标条状图像块的增殖细胞离散程度梯度变化值,得到各个条状图像块的增殖细胞离散程度梯度变化值;第四确定单元,用于将多个条状图像块的增殖细胞离散程度梯度变化值的平均值确定为增殖细胞离散程度梯度变化表征值;第五确定单元,用于基于增殖细胞离散程度梯度变化表征值确定腺管极性紊乱程度参数。9.一种计算机设备,其特征在于,所述计算机设备包括:一个或多个处理器;存储器;以及一个或多个应用程序,其中所述一个或多个应用程序被存储于所述存储器中,并配置
为由所述处理器执行以实现权利要求1至7中任一项所述的腺管极性紊乱程度参数的确定方法。10.一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被处理器进行加载,以执行权利要求1至7任一项所述的腺管极性紊乱程度参数的确定方法中的步骤。
技术总结
本申请提供一种腺管极性紊乱程度参数的确定方法及装置,该腺管极性紊乱程度参数的确定方法包括:获取腺管病理图像;得到多个细胞分割区域;得到属于增殖细胞的多个增殖细胞分割区域;将腺管病理图像分为多个条状图像块;计算目标条状图像块中的多个区域形心距离;将目标条状图像块中的多个区域形心距离的标准差与多个区域形心距离的平均值之比确定为目标条状图像块的增殖细胞离散参数;得到各个条状图像块的增殖细胞离散程度梯度变化值;将增殖细胞离散程度梯度变化值的平均值确定为增殖细胞离散程度梯度变化表征值;基于增殖细胞离散程度梯度变化表征值确定腺管极性紊乱程度参数。本申请能够提高腺管极性紊乱程度参数的确定准确度。的确定准确度。的确定准确度。
技术研发人员:李昊 胡珊
受保护的技术使用者:武汉楚精灵医疗科技有限公司
技术研发日:2023.08.08
技术公布日:2023/9/7
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/