一种利用低品位的铁尾矿制备磁性分子筛的方法
未命名
09-12
阅读:174
评论:0

1.本发明涉及一种利用铁尾矿制备磁性分子筛的方法,应用于吸附重金属,属于无机功能环境保护材料和固废资源化利用技术领域。
背景技术:
2.随着对矿产品的需求越来越大,越来越多的矿石被开采。铁尾矿作为选矿后的废弃物,其中的金属品位和元素含量相对较低,作为固体废弃物被大量堆存,这不仅占用土地,还会破坏地下水质量,成为重要的环境污染源,更严重的会造成地质灾害。二次回收利用铁尾矿会同时带来环境效益和经济效益,所以铁尾矿的合理处置已成为减轻环境污染压力、实现矿业可持续发展的关键问题。通过分析检测,铁尾矿中sio2含量一般在60%以上,含铁量一般在10-35%左右。
3.1992年m41s系列分子筛的合成,介孔分子筛开始正式进入人们的视野。分子筛在结构上具有比表面积大、孔径单一、孔道结构有序性强等优点,在实际应用过程中具有水热稳定性强的优势。因此分子筛在作为催化剂、吸附剂等方面具有一定的应用价值,也因此广泛应用于环保领域。目前分子筛的制备一般采用正硅酸乙酯作为硅源,原料成本相对较高。现有技术中也有利用铁尾矿制备分子筛的方法,如专利cn 113353950 a中公开的方法,该方法以铁尾矿中的sio2为硅源,预煅烧后,与naoh溶液反应得到硅酸钠溶液,再与溶解在盐酸溶液中的模板剂晶化反应,再经煅烧既得分子筛,为铁尾矿的资源化利用提供新的途径,但此方法的制备分子筛需采用强酸溶液,且制备的分子筛是传统的晶型,而且没有磁性,因此在使用的范围和回收利用方面都有一定地限制。
4.分子筛一般为粉体结构,为了降低实际应用成本,提高分子筛的重复使用性能,就要在使用过程中提高分子筛在水中的快速分离。磁性分子筛虽然在一定程度上会降低分子筛的比表面积,降低其平均孔径,但会提高分子筛的回收效率,大大降低其应用成本。
技术实现要素:
5.本发明的目的在于提供一种利用低品位的铁尾矿制备磁性分子筛的方法,利用成本更廉价、来源更广泛的铁尾矿作为合成原料,通过复合酸浸-碱熔融法获得铁源和硅源,并用于水热合成磁性分子筛,实现了尾矿的高附加值再生利用。
6.本发明采取的技术方案为:
7.一种利用低品位的铁尾矿制备磁性分子筛的方法,包括步骤如下:
8.(1)将铁尾矿预处理:将铁尾矿风干后研磨粉碎并过200目筛,得到磨细后的铁尾矿粉,将磨细后的铁尾矿粉与复配酸混合搅拌,常温常压下反应一段时间后过滤,取得滤液和滤渣,滤液为含铁酸性溶液,滤渣干燥保存;
9.(2)提取铁元素并制备fe3o4磁性纳米颗粒:在搅拌下向步骤(1)所得的滤液中缓慢添加nabh4还原剂,至溶液变为无色,过滤洗涤得金属铁颗粒,将金属铁颗粒与fe
3+
溶液在酸性条件下反应生成fe
2+
溶液,然后通过共沉淀法制备fe3o4磁性纳米颗粒;
10.(3)提取硅元素:将步骤(1)得到的滤渣与na2co3混合,置于马弗炉中600~700℃焙烧1~3h,冷却后溶于水充分搅拌浸出获得含硅溶液;
11.(4)制备磁性分子筛原粉:将模板剂与溶剂混合得模板剂溶液,将步骤(3)获得的含硅溶液缓慢添加至模板剂溶液中,并在搅拌下加入步骤(2)制得的fe3o4磁性纳米颗粒,后用hcl调节ph=9~11,静置陈化后加入水热反应釜中,在100~170℃下晶化24~72h,冷却后经过抽滤、洗涤、过滤获得磁性分子筛原粉;
12.(5)去除模板剂:将步骤(4)所得原粉以2-3℃/min的速度升温至500-550℃并煅烧4-5h得到磁性分子筛。
13.上述方法中,步骤(1)所述的复配酸为盐酸与柠檬酸按照质量比1~2:1~4混合的混合物,优选1:3;铁尾矿粉与复配酸按0.5~1.5:1的摩尔比混合,优选0.8:1;铁尾矿粉与复配酸反应时间为2-7h,优选5h以上。铁尾矿的主要组份质量分数为sio
2 45~55%、fe2o310~30%、al2o
3 3~7%、cao 2~6%、mgo 3~5%、na2o 1~2%。
14.步骤(3)中所述的滤渣与na2co3的质量比为1:2~4,优选1:2;焙烧后产物冷却后以1:5的固液比溶于水。
15.步骤(4)中所述的模板剂为十六烷基三甲基溴化铵(ctab)、三嵌段共聚物p123(聚环氧乙烷-聚环氧丙烷-聚环氧乙烷)、f127(泊洛沙姆127)、四丙基溴化铵(tpabr)中的一种或几种,所述的溶剂选自水、盐酸、乙醇中的一种或几种。按照凝胶反应体系摩尔比优选为[si:模板剂:溶剂]=[1:(0.03-1.3):(100-150)]。fe3o4磁性纳米颗粒加入量为模板剂质量的5%~17%,优选为10%。
[0016]
与现有技术相比,本发明具有如下有益效果:
[0017]
(1)本发明以铁尾矿作为原料,通过酸浸-碱熔融的一系列综合应用获取铁源和硅源,大大减轻了环境压力,降低了尾矿库运维成本。
[0018]
(2)本发明通过铁尾矿中获取的铁源和硅源制备出磁性纳米有序分子筛,有六方有序孔道结构,该方法制备的分子筛可以达到商品技术标准,最大比表面积可达706.18m2/g,添加磁性纳米颗粒后,最大比表面积也可达407.56m2/g。
[0019]
(3)利用本发明方法制备的分子筛可用于对矿区废水中重金属离子的吸附,3h内达到吸附平衡,吸附容量达30mg/g,具有明显的社会、经济、环境三大效益。
[0020]
(4)利用本发明制备的分子筛具有可广泛应用于吸附、催化等作用,其因具有磁性特性可以与相关介质进行快速分离,并实现循环利用,循环回收利用可达10次,其吸附等作用效率可达到原样品效率的88~95%。
附图说明
[0021]
图1为本发明方法的流程图;
[0022]
图2为本发明实施例所用铁尾矿的xrd图;
[0023]
图3为本发明制备fe3o4纳米颗粒的表征图,(a)ftir图,(b)vsm图,(c)xrd图;
[0024]
图4为本发明制备的磁性分子筛与普通分子筛的扫描电镜(sem)图,(a)mcm-41,(b)sba-15,(c)sba-16,(d)zsm-5,(e)磁性分子筛mcm-41,(f)磁性分子筛sba-15,(g)磁性分子筛sba-16,(h)磁性分子筛zsm-5;
[0025]
图5为本发明实施例1制备的磁性分子筛与普通分子筛焙烧前后的傅里叶红外
(ftir)图,(a)为mcm-41焙烧前后ftir图,(b)为本发明磁性分子筛mcm-41焙烧前后ftir图;
[0026]
图6为本发明实施例1制备的磁性分子筛与普通mcm-41分子筛的xrd图,(a)小角度xrd对比图,(b)广角xrd对比图,(c)本发明磁性分子筛mcm-41的xrd图;
[0027]
图7为本发明实施例制备的磁性分子筛与普通分子筛对pb
2+
废水的吸附降解曲线的比较。
具体实施方式
[0028]
下面结合实施例对本发明作进一步的说明。然而,本发明的范围并不限于下述实施例。在不背离本发明的精神和范围的前提下,可以对本发明进行各种变化和修饰。
[0029]
下述实施例中所涉及的仪器、试剂、材料等,若无特别说明,均为现有技术中已有的常规仪器、试剂、材料等,可通过正规商业途径获得。下述实施例中所涉及的实验方法,检测方法等,若无特别说明,均为现有技术中已有的常规实验方法,检测方法等。
[0030]
实施例1利用低品位的铁尾矿制备磁性分子筛mcm-41的方法:
[0031]
(1)以铁尾矿为原料,铁尾矿化学成分组成分析如表1所示,物相组成如图2所示,将磨细后的铁尾矿粉与复配酸混合搅拌5h,盐酸与柠檬酸按照质量比1:3混合,铁尾矿粉与复配酸按0.8:1的摩尔比混合,过滤分别获得滤液和滤渣。
[0032]
(2)准确称取nabh4,在搅拌下缓慢添加至获得的滤液中,黑色铁颗粒逐渐形成,至溶液变为无色,过滤洗涤后将铁金属颗粒与fe
3+
溶液按1:2的摩尔比混合获得fe
2+
溶液,最后通过共沉淀法制备出fe3o4黑色颗粒。
[0033]
(3)将步骤(1)获得的滤渣10g与20g na2co3充分混合后,置于600℃马弗炉中焙烧2h,焙烧完成后,冷却至室温,取出熟料以1:5的固液比溶于水进行充分搅拌后抽滤得到上层含硅滤液。
[0034]
(4)取ctab 0.5466g,溶解于30℃的18ml水中,得模板剂溶液,然后准确量取33.91g/l的含硅滤液18.2ml添加至模板剂溶液中并充分搅拌1h混合均匀,使得sio2:ctab:水的摩尔比=1:0.15:100,随后加入0.06g fe3o4黑色颗粒。用hcl调节ph=11,60℃搅拌2h后放置室温陈化1h。转入水热反应釜中,100℃下晶化48小时。冷却后将混合物抽滤并彻底洗涤以获得初始mcm-41粉末。随后将干燥的mcm-41粉末装入马弗炉中并以3℃/min的速率逐渐加热至550℃ 5h以去除模板剂,形成磁性分子筛mcm-41。
[0035]
表1风干后铁尾矿的xrf元素分析(质量百分比,%)
[0036]
[0037]
实施例2利用低品位的铁尾矿制备磁性分子筛sba-15的方法:
[0038]
(1)以铁尾矿为原料,铁尾矿化学成分组成分析如表1所示,物相组成如图2所示,将磨细后的铁尾矿粉与复配酸混合搅拌5h,盐酸与柠檬酸按照质量比1:3混合,铁尾矿粉与复配酸按1.5:1的摩尔比混合,过滤分别获得滤液和滤渣。
[0039]
(2)准确称取nabh4,在搅拌下缓慢添加至获得的滤液中,黑色铁颗粒逐渐形成,至溶液变为无色,过滤洗涤后将铁金属颗粒与fe
3+
溶液按1:2的摩尔比混合获得fe
2+
溶液,最后通过共沉淀法制备出fe3o4黑色颗粒。
[0040]
(3)将步骤(1)获得的滤渣10g与20g na2co3充分混合后,置于600℃马弗炉中焙烧2h,焙烧完成后,冷却至室温,取出熟料以1:5的固液比溶于水进行充分搅拌后抽滤得到上层含硅滤液。
[0041]
(4)取4g p123(聚环氧乙烷-聚环氧丙烷-聚环氧乙烷)溶于25ml浓hcl和30ml水,在40℃下充分搅拌至溶液澄清,得模板剂溶液,然后将含硅滤液52.62ml添加至模板剂溶液中,随后加入0.4g fe3o4黑色颗粒,在40℃下搅拌1h后保温静置24h。随后将溶液转移到水热反应釜中100℃下晶化72h,冷却后将混合物抽滤并彻底洗涤以获得sba-15原粉。将干燥的sba-15粉末装入马弗炉中,以3℃/min的速率逐渐加热至550℃,在此温度下保持5h以去除模板剂,形成磁性分子筛sba-15。
[0042]
实施例3利用低品位的铁尾矿制备磁性分子筛磁性sba-16的方法:
[0043]
(1)以铁尾矿为原料,铁尾矿化学成分组成分析如表1所示,物相组成如图2所示,将磨细后的铁尾矿粉与复配酸混合搅拌5h,盐酸与柠檬酸按照质量比1:3混合,铁尾矿粉与复配酸按0.5:1的摩尔比混合,过滤分别获得滤液和滤渣。
[0044]
(2)准确称取nabh4,在搅拌下缓慢添加至获得的滤液中,黑色铁颗粒逐渐形成,至溶液变为无色,过滤洗涤后将铁金属颗粒与fe
3+
溶液按1:2的摩尔比混合获得fe
2+
溶液,最后通过共沉淀法制备出fe3o4黑色颗粒。
[0045]
(3)将步骤(1)获得的滤渣10g与20g na2co3充分混合后,置于600℃马弗炉中焙烧2h,焙烧完成后,冷却至室温,取出熟料以1:5的固液比溶于水进行充分搅拌后抽滤得到上层含硅滤液。
[0046]
(4)取2g f127(泊洛沙姆127)溶于浓25ml hcl和15ml水,在35℃下充分搅拌至溶液澄清,得模板剂溶液,然后将含硅滤液52.62ml添加至模板剂溶液中,随后加入0.2gfe3o4黑色颗粒,在40℃下搅拌1h后保温静置24h。随后将溶液转移到水热反应釜中100℃下晶化72h,冷却后将混合物抽滤并彻底洗涤以获得sba-16原粉。将干燥的sba-16粉末装入马弗炉中,以3℃/min的速率逐渐加热至550℃,在此温度下保持5h以去除模板剂,形成磁性分子筛sba-16。
[0047]
实施例4利用低品位的铁尾矿制备磁性分子筛zsm-5的方法:
[0048]
(1)以铁尾矿为原料,铁尾矿化学成分组成分析如表1所示,物相组成如图2所示,将磨细后的铁尾矿粉与复配酸混合搅拌5h,盐酸与柠檬酸按照质量比1:3混合,铁尾矿粉与复配酸按0.8:1的摩尔比混合,过滤分别获得滤液和滤渣。
[0049]
(2)准确称取nabh4,在搅拌下缓慢添加至获得的滤液中,黑色铁颗粒逐渐形成,至溶液变为无色,过滤洗涤后将铁金属颗粒与fe
3+
溶液按1:2的摩尔比混合获得fe
2+
溶液,最后通过共沉淀法制备出fe3o4黑色颗粒。
[0050]
(3)将步骤(1)获得的滤渣10g与20g na2co3充分混合后,置于600℃马弗炉中焙烧2h,焙烧完成后,冷却至室温,取出熟料以1:5的固液比溶于水进行充分搅拌后抽滤得到上层含硅滤液。
[0051]
(4)按照n(sio2):n(乙醇):n(tpabr):n(水)=1:1:0.03:104.91的摩尔比先取含硅滤液上清液于45℃搅拌30min后加入乙醇继续搅拌30min,后继续加入tpabr充分搅拌15min。调节ph=10,再加入滤渣自身质量0.5-1.2%的zsm-5晶种充分搅拌均匀,随后加入fe3o4黑色颗粒。45℃静置陈化12h。陈化过程完成后转入水热反应釜,170℃水热24h。冷却后,抽滤洗涤得到zsm-5原粉。以3℃/min的速率逐渐加热至550℃,在此温度下保持5h以去除模板剂,形成磁性分子筛zsm-5。
[0052]
相关性能的测试:
[0053]
(1)对于原铁尾矿的元素和物相进行分析,获得表1和图1,可知铁尾矿中si、fe元素含量排前两位。铁尾矿中主要成分有石英、堇青石[(mg,fe)2al4si5o
18
)],另有白云石、斜磷锰矿和海绿石。
[0054]
(2)将获得的fe3o4纳米颗粒进行ftir、vsm和xrd分析,结果如图3。如图可知所有特征峰均已出现,磁化饱和强度(ms)为31.71emu
·
g-1
。根据公式计算,测得fe3o4的平均晶粒尺寸为22.97nm。
[0055]
(3)将获得磁性分子筛进行形貌、结构以及物相的测试,结果如图4~6。由电镜图可以看出磁性分子筛全部呈球形存在,球形大小略有不一,各球形颗粒与颗粒之间互相枝接与堆叠,呈珊瑚状,颗粒性与有序性强。红外结构显示经过焙烧成功脱除模板剂,且磁性fe3o4成功掺入。通过xrd图可以看出在2θ=0.77
°
、2.12
°
处出现了(100)和(110)衍射峰,另有两处不明显的(200)和(210)衍射峰,在这一区域衍射峰的出现可以说明由铁尾矿制备的分子筛形成了六方有序孔道结构。
[0056]
(4)将实施例1、2、3、4获得的磁性分子筛mcm-41、sba-15、sba-16分别进行pb
2+
废水的吸附性能测试:
[0057]
称取制备的磁性分子筛作吸附剂加入50ml 200mg/l pb
2+
溶液中,将混合溶液置于振荡床中以25℃、180r
·
min-1
频率振荡吸附,根据实验设计的指定时间取5ml溶液过滤定容至10ml容量瓶中,通过火焰法原子吸收光谱仪测定其中重金属含量并计数。如图7可知,本发明所制备分子筛对pb
2+
最大吸收容量可达30.06mg/g。
[0058]
以上所述仅为本发明的较佳实施例而已,并不用于限制本发明,凡在本发明的精神和原则范围之内所作的任何修改、等同替换以及改进等,均应包含在本发明的保护范围之内。
技术特征:
1.一种利用低品位的铁尾矿制备磁性分子筛的方法,其特征是,包括步骤如下:(1)将铁尾矿预处理:将铁尾矿风干后研磨粉碎并过200目筛,得到磨细后的铁尾矿粉,将磨细后的铁尾矿粉与复配酸混合搅拌,常温常压下反应一段时间后过滤,取得滤液和滤渣,滤液为含铁酸性溶液,滤渣干燥保存;(2)提取铁元素并制备fe3o4磁性纳米颗粒:在搅拌下向步骤(1)所得的滤液中缓慢添加nabh4还原剂,至溶液变为无色,过滤洗涤得金属铁颗粒,将金属铁颗粒与fe
3+
溶液在酸性条件下反应生成fe
2+
溶液,然后通过共沉淀法制备fe3o4磁性纳米颗粒;(3)提取硅元素:将步骤(1)得到的滤渣与na2co3混合,置于马弗炉中600~700℃焙烧1~3h,冷却后溶于水充分搅拌浸出获得含硅溶液;(4)制备磁性分子筛原粉:将模板剂与溶剂混合得模板剂溶液,将步骤(3)获得的含硅溶液缓慢添加至模板剂溶液中,并在搅拌下加入步骤(2)制得的fe3o4磁性纳米颗粒,后用hcl调节ph=9~11,静置陈化后加入水热反应釜中,在100~170℃下晶化24~72h,冷却后经过抽滤、洗涤、过滤获得磁性分子筛原粉;(5)去除模板剂:将步骤(4)所得原粉以2-3℃/min的速度升温至500-550℃并煅烧4-5h得到磁性分子筛。2.根据权利要求1所述的一种利用低品位的铁尾矿制备磁性分子筛的方法,其特征是,步骤(1)所述的复配酸为盐酸与柠檬酸按照质量比1~2:1~4混合的混合物,铁尾矿粉与复配酸按0.5~1.5:1的摩尔比混合。3.根据权利要求1所述的一种利用低品位的铁尾矿制备磁性分子筛的方法,其特征是,步骤(1)所述的铁尾矿粉与复配酸反应时间为2~7h。4.根据权利要求1所述的一种利用低品位的铁尾矿制备磁性分子筛的方法,其特征是,步骤(3)中所述的滤渣与na2co3的质量比为1:2~4,焙烧后产物冷却后以1:5的固液比溶于水。5.根据权利要求1所述的一种利用低品位的铁尾矿制备磁性分子筛的方法,其特征是,步骤(4)中所述的模板剂为十六烷基三甲基溴化铵、三嵌段共聚物p123、f127、四丙基溴化铵中的一种或几种,所述的溶剂选自水、盐酸、乙醇中的一种或几种。6.根据权利要求1所述的一种利用低品位的铁尾矿制备磁性分子筛的方法,其特征是,步骤(4)中反应物中摩尔比优选为m
si
:m
模板剂
:m
溶剂
=1:0.03~1.3:100~150。7.根据权利要求1所述的一种利用低品位的铁尾矿制备磁性分子筛的方法,其特征是,步骤(4)中fe3o4磁性纳米颗粒加入量为模板剂质量的5%~17%。
技术总结
本发明涉及一种利用低品位的铁尾矿制备磁性分子筛的方法,利用成本更廉价、来源更广泛的铁尾矿作为合成原料,通过复合酸浸-碱熔融法获得铁源和硅源,并用于水热合成磁性分子筛,通过铁尾矿中获取的铁源和硅源制备出磁性纳米有序分子筛,有六方有序孔道结构,可用于对矿区废水中重金属离子的吸附,并可实现多次循环利用,吸附效率仍可达到原样品的88%~95%,具有明显的社会、经济、环境三大效益。环境三大效益。环境三大效益。
技术研发人员:任会学 李洁 李春彤 秦雅萍 侯程曦 单艺 孙士泽 蔡颖慧
受保护的技术使用者:山东建筑大学
技术研发日:2023.06.12
技术公布日:2023/9/9
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/