一种D-A结构双极性导电聚合物及其制备方法
未命名
09-12
阅读:97
评论:0

一种d-a结构双极性导电聚合物及其制备方法
技术领域
1.本发明涉及一种新型d-a结构双极性导电聚合物及其制备方法,以及将其作为电极材料应用在超级电容器等储能领域。
背景技术:
2.超级电容器是当今社会重要的一种储能装置,其具有功率密度高和循环稳定性高等优点,已成为目前研究的重点。在超级电容器各种电极材料中,导电聚合物由于发生氧化还原反应,因此其比电容较高,同时其电化学性质可通过调节分子结构来改变,目前得到广泛的关注。电极材料的结构决定着超级电容器的比电容和电压窗口,然而,低能量密度一直是限制其发展的问题,这阻碍了它们作为能量存储设备的广泛使用,比如在电子显示、相机闪光灯和电动汽车等小众应用。目前超级电容器电极材料主要包括碳材料、金属氧化物、导电聚合物三大类型。本发明涉及有机导电聚合物材料,导电聚合物作为一种赝电容性材料,具有易于合成、柔性强、可视化强等优点,主要包括聚苯胺、聚吡咯、聚噻吩、pedot及其衍生物导电聚合物
3.导电聚合物电极材料是通过掺杂而发生的赝电容电极材料,聚合物主链被氧化(掺杂)导致电荷离域,掺杂-脱掺杂过程会发生法拉第电荷存储。但目前研究较多的都是较稳定的p型(氧化)掺杂导电聚合物,比如聚苯胺、聚吡咯等,因此电压范围局限在正向,导致存储能力有限,导致较低的能量密度,而d-a双极性导电聚合物既能p掺杂又能n掺杂,具有不同电压窗口,可提供更高的器件工作电压,获得高能量密度的储能器件。然而目前双极性导电聚合物开发较少,极大限制高能量密度超级电容器的发展
4.本发明设计合成了一种新型d-a双极性结构单体,给体选择高导电性和稳定性的3,4-乙烯二氧噻吩(edot),受体选择六氟二酐,并将单体进行电化学聚合成薄膜,应用在超级电容器领域。
技术实现要素:
5.本发明的目的是设计基于胺甲基edot和六氟二酐合成新型d-a双极性结构化合物,并将其电聚合成膜作为电极材料应用在超级电容器等储能领域。
6.本发明的目的通过以下技术方案实现:
7.第一方面,本发明提供式(ⅰ)所示d-a双极性结构单体:
[0008][0009]
第二方面,本发明还提供所述式(ⅰ)所示d-a双极性结构单体的制备方法,所述方法为:
[0010]
在保护氛围(在本发明的一个实施例中为氮气氛围)下,将式(ⅱ)所示化合物加入到丙酸中,加入式(ⅲ)所示胺甲基edot,在120~150℃下反应18~24小时(优选140℃下反应20小时),所得反应液经后处理,得到所述式(ⅰ)所示d-a双极性结构单体;所述式(ⅱ)所示化合物与式(ⅲ)所示胺甲基edot的摩尔比为1:5~6(优选1:5);
[0011][0012]
进一步,所述丙酸的体积以所述式(ⅲ)所示胺甲基edot的质量计为8~10ml/g。在本发明的一个实施例中,所述后处理为:待所述反应液冷却至室温,倒入蒸馏水中,待沉降出固体,真空抽滤,所得滤饼用蒸馏水洗涤,干燥,以体积比3:2~1的乙酸乙酯与石油醚的混合溶液作为流动相进行硅胶柱层析,收集含目标产物的洗脱液,减压蒸馏,得到所述式(ⅰ)所示d-a双极性结构单体。
[0013]
发明通过核磁共振氢谱(1h nmr)表征了目标产物1h nmr(400mhz,chloroform-d)δ7.95(s,2h),7.84(s,4h),6.34(s,4h),4.50(s,2h),4.25(s,2h),4.06(s,4h),3.92(s,2h).
[0014]
第三方面,本发明提供一种d-a结构双极性导电聚合物,所述d-a结构双极性导电聚合物按照如下方法制备:
[0015]
将式(1)所示d-a双极性结构单体作为聚合单体,四丁基六氟磷酸铵作为支撑电解质,溶解在体积比为2:3的二氯甲烷与乙腈的混合溶剂中,构建电化学聚合体系,以ito作为工作电极,铂丝做对电极,ag/ag+作为参比电极,采用循环伏安法进行电聚合,得到所述d-a结构双极性导电聚合物;
[0016][0017]
在所述电化学聚合体系中,所述式(1)所示d-a双极性结构单体的浓度为5mmol/l,所述四丁基六氟磷酸铵的浓度为0.05mol/l。
[0018]
进一步,所述循环伏安法的参数为:电压-0.3~1.6v,扫速为100~150mv/s,聚合圈数为10~15圈。在本发明的一个实施例中,所述循环伏安法的参数为:电压-0.3~1.6v,扫速为100mv/s,聚合圈数为10圈。
[0019]
第四方面,本发明提供上述d-a结构双极性导电聚合物在(作为电极材料)制备超级电容器中的应用。
[0020]
与现有技术相比,本发明的有益效果在于:
[0021]
目前导电聚合物作为超级电容器电极材料大多仅能发生p掺杂,导致电压范围较窄,本发明合成一种新型的d-a双极性结构分子,并将其通过电聚合制备得到双极性导电聚合物电极材料,正弦电压可达到1.6v,负向电压可达到-2v,极大的扩展了电极材料的电压范围,这对于构建宽电压、高能量密度的超级电容器具有重要意义。
附图说明
[0022]
图1:本发明实施1单体的合成路线;
[0023]
图2:本发明实施1单体的核磁氢谱表征;
[0024]
图3:本发明实施2聚合物的循环伏安电化学聚合曲线;
[0025]
图4:本发明实施2聚合物的红外表征;
[0026]
图5:本发明实施2薄膜的正向不同扫速的循环伏安曲线;
[0027]
图6:本发明实施2薄膜的负向不同扫速的循环伏安曲线;
[0028]
图7:本发明实施2薄膜的阻抗图;
[0029]
图8:本发明对比例的分子结构;
[0030]
图9:本发明对比例的负向不同扫速循环伏安;
[0031]
图10:本发明对比例的负向动力学;
[0032]
图11:本发明实施例2薄膜负向动力学。
具体实施方式
[0033]
下面以具体实施例对本发明的技术方案作进一步说明,但本发明的保护范围不限于此。
[0034]
实施例1d-a双极性结构单体分子的合成
[0035]
在连续向反应瓶充氮气的氛围下,将六氟二酐(0.89g,2mmol)加入到有丙酸溶剂(14ml)的烧瓶中,向其加入胺甲基edot(1.7g,10.0mmol),在140℃温度下反应20小时,待体系反应结束冷却至室温之后,将反应液倒入装有120ml蒸馏水的烧杯中,沉降出固体之后利用真空抽滤过滤出固体相,用蒸馏水反复清洗洗去溶剂,洗完放入烘箱在60℃下进行干燥,待固体相待干燥之后,以300-400目硅胶为固定相,乙酸乙酯/石油醚体积比3:2混合液作为流动相进行柱层析纯化,收集目标产物的洗脱液,通过旋蒸进行减压蒸馏除去混合溶剂,得到目标黄色固体产物1.4g。合成路线如图1所示,单体分子的核磁氢谱表征如图2所示,证明单体被成功合成1h nmr(400mhz,chloroform-d)δ7.95(s,2h),7.84(s,4h),6.34(s,4h),4.50(s,2h),4.25(s,2h),4.06(s,4h),3.92(s,2h).
[0036]
实施例2d-a双极性结构单体分子电化学聚合成薄膜应用在超级电容器领域:
[0037]
将d-a双极性结构分子(0.038g;0.05mmol)作为聚合单体,以四丁基六氟磷酸铵(0.19g;0.5mmol)为支撑电解质,溶解在10ml二氯甲烷和乙腈混合溶剂中,其中体积比为2:3中,采用循环伏安法进行电聚合,以三电极为体系,即以ito作为工作电极,铂丝做对电极,ag/ag+作为参比电极,参数设置电压-0.3~1.6v,扫速为100mv/s,聚合10圈得到薄膜,聚合曲线如图3所示。从图4可以看出位于3115cm-1
1847cm-1
和920cm-1
的吸收峰不复存在,这些峰对应于噻吩环2,5位的c-h振动,表明单体被成功聚合。再将制备好的导电聚合物薄膜进行电化学测试,以高氯酸锂(0.1mol/l)为支持电解质,乙腈为溶剂。正向不同扫速循环伏安曲线如图5,可以看出正向最高电压达到1.6v,且具有良好的对称性。聚合物薄膜的负向不同扫速循环伏安曲线如图6所示,可以看出同样从低扫速到高扫速,循环伏安曲线表明具有良好的氧化还原,负向最低电压可达到-2v。聚合物薄膜的阻抗测试如图7所示,高频区半圆半径较小,表示界面电阻较小,证明该聚合物薄膜具有较好的导电性,可应用于超级电容器领域。
[0038]
对比例作为对比例的含邻苯二甲酰亚胺的导电聚合物薄膜的制备
[0039]
选用实施例2同样的条件,其中单体选择0.015g,0.05mmol.单体结构如图8所示,通过同样的电化学条件制备得到聚合物电极材料进行了负向的电化学测试。得到对比例和实施例2的负向不同扫速cv,进而得到动力学对比,从对比例不同扫速cv图9得到的动力学10图,可以看出其b值为0.55,是明显受扩散限制的电池行为。而实施例2获得的双极性导电聚合物由图不同扫速cv得到的动力学图,可以看出其b值为0.89,明显大于0.55并且趋向于1,接近于非扩散限制的电容行为,因此可以看出该实施例得到的电极材料得以大幅提高动力学过程。
技术特征:
1.式(ⅰ)所示d-a双极性结构单体:2.如权利要求1所述的式(ⅰ)所示d-a双极性结构单体的制备方法,其特征在于所述方法为:在保护氛围下,将式(ⅱ)所示化合物加入到丙酸中,加入式(ⅲ)所示胺甲基edot,在120~150℃下反应18~24小时,所得反应液经后处理,得到所述式(ⅰ)所示d-a双极性结构单体;所述式(ⅱ)所示化合物与式(ⅲ)所示胺甲基edot的摩尔比为1:5~6;3.如权利要求2所述的式(ⅰ)所示d-a双极性结构单体的制备方法,其特征在于:所述保护氛围为氮气氛围。4.如权利要求2所述的式(ⅰ)所示d-a双极性结构单体的制备方法,其特征在于:所述丙酸的体积以所述式(ⅲ)所示胺甲基edot的质量计为8~10ml/g。5.如权利要求2所述的式(ⅰ)所示d-a双极性结构单体的制备方法,其特征在于所述后处理为:待所述反应液冷却至室温,倒入蒸馏水中,待沉降出固体,真空抽滤,所得滤饼用蒸馏水洗涤,干燥,以体积比3:2~1的乙酸乙酯与石油醚的混合溶液作为流动相进行硅胶柱层析,收集含目标产物的洗脱液,减压蒸馏,得到所述式(ⅰ)所示d-a双极性结构单体。6.一种d-a结构双极性导电聚合物,其特征在于所述d-a结构双极性导电聚合物按照如下方法制备:将式(1)所示d-a双极性结构单体作为聚合单体,四丁基六氟磷酸铵作为支撑电解质,溶解在体积比为2:3的二氯甲烷与乙腈的混合溶剂中,构建电化学聚合体系,以ito作为工作电极,铂丝做对电极,ag/ag+作为参比电极,采用循环伏安法进行电聚合,得到所述d-a结
构双极性导电聚合物;7.如权利要求6所述的d-a结构双极性导电聚合物,其特征在于:在所述电化学聚合体系中,所述式(1)所示d-a双极性结构单体的浓度为5mmol/l,所述四丁基六氟磷酸铵的浓度为0.05mol/l。8.如权利要求6所述的d-a结构双极性导电聚合物,其特征在于:所述循环伏安法的参数为:电压-0.3~1.6v,扫速为100~150mv/s,聚合圈数为10~15圈。9.如权利要求8所述的d-a结构双极性导电聚合物,其特征在于:所述循环伏安法的参数为:电压-0.3~1.6v,扫速为100mv/s,聚合圈数为10圈。10.如权利要求6所述的d-a结构双极性导电聚合物在制备超级电容器中的应用。
技术总结
本发明提供了一种D-A结构双极性导电聚合物及其制备方法,以及其作为电极材料在制备超级电容器中的应用,本发明制备的新型D-A双极性导电聚合物薄膜可用于超级电容器领域,该D-A单体制备的导电聚合物薄膜具有网状聚合物结构,电化学性能优异,表现出正向1.6V,负向-2V的宽电压窗口,是一种潜在的超级电容器电极材料。料。
技术研发人员:刘军磊 侯伟伟 张诚 欧阳密
受保护的技术使用者:浙江工业大学
技术研发日:2023.06.07
技术公布日:2023/9/9
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/