喉栓式变推力发动机喉栓喷管构型设计知识迁移优化方法

未命名 09-21 阅读:104 评论:0


1.本发明涉及发动机设计技术领域,具体是一种喉栓式变推力发动机喉栓喷管构型设计知识迁移优化方法。


背景技术:

2.喉栓式变推力固体发动机由于工作条件特殊、性能要求严格,其推力需要具备大范围连续可调等优越性能。喉栓和喷管是喉栓式变推力固体发动机的重要组件,推力性能优化是喉栓式变推力固体发动机设计中最核心最困难的技术之一,其主要任务是通过对喉栓和喷管的构型参数迭代优化,使得最大推力最大,从而设计出满足性能需求的最优构型。
3.目前常用的喉栓式变推力固体发动机喉栓喷管优化方法有:遗传算法:通过模拟自然进化过程中基因的选择、交叉和变异等特点来转化并求解优化问题。在不考虑计算资源的情况下遗传算法虽然可以得到较好的设计结果,但目前常用的遗传算法在解决复杂的喉栓式变推力发动机喉栓喷管构型设计问题时通常需要数千次迭代,使其难以在高耗时的高精度推力仿真模型上进行应用,单次设计造成的计算成本难以让人接受。
4.序列近似优化方法:通过实验设计、近似建模、序列采样三个环节对优化问题进行迭代求解。其核心是采用代理模型方法构建近似模型,通过迭代训练使其逼近和替代高耗时的仿真模型,从而大幅提高优化效率。通常构建代理模型的方法包括径向基法、kriging法、多项式响应面法等。与遗传算法相比,序列近似优化方法虽然可以有效减少迭代次数,避免耗时程序仿真的多次调用,且模型近似精度随着迭代的进行而不断提高,能实现快速性能预测。然而,实际工程问题很少孤立存在,传统的优化求解方法,包括遗传算法和序列近似优化方法,往往忽视了认知和总结经验规律的能力,对于新的优化问题往往重新开始优化,没有考虑先验知识,从而产生大量不必要的计算成本。


技术实现要素:

5.针对上述现有技术中喉栓式变推力发动机推力性能优化效率低、设计所得推力性能差、不同内弹道参数需要重新进行迭代优化构型导致计算资源浪费的问题,本发明提供一种喉栓式变推力发动机喉栓喷管构型设计知识迁移优化方法,通过利用过往设计知识,实现了喉栓式发动机推力性能的快速优化设计。
6.为实现上述目的,本发明提供一种喉栓式变推力发动机喉栓喷管构型设计知识迁移优化方法,包括如下步骤:步骤1,基于相似性度量准则,在知识库中选取多个喉栓式变推力发动机喉栓喷管构型设计的源任务;步骤2,基于选取的源任务构建目标域的低精度模型,并基于高精度样本点与低精度模型的预测误差构建误差模型;步骤3,基于所述低精度模型与所述误差模型构建目标域的多精度预测模型;
步骤4,搜索所述多精度预测模型当前最优的高精度样本点,并判断所述多精度预测模型是否收敛:若是,则将所述多精度预测模型历史最优的高精度样本点作为喉栓式变推力发动机喉栓喷管构型的设计结果并输出;否则,将所述多精度预测模型当前最优的高精度样本点纳入所述误差模型,并更新所述误差模型与所述多精度预测模型后,再次进行步骤4,直至所述多精度预测模型收敛。
7.在其中一个实施例,步骤1中,选取所述源任务的过程具体为:计算当前喉栓式变推力发动机喉栓喷管构型设计的目标任务与所述知识库中每一任务的相似度为:;其中,表示目标任务与所述知识库第个任务的相似度,表示所述知识库第个任务的元特征,表示目标任务的元特征,表示目标任务与所述知识库第个任务的范数,表示计算目标任务与所述知识库第个任务的范数,表示所述知识库任务的数量;在所述知识库中选取个与目标任务相似度最大的任务作为所述源任务。
8.在其中一个实施例,步骤2中,所述基于选取的源任务构建目标域的低精度模型,为:;其中,表示低精度模型,表示样本点,表示源任务的数量,表示第个源任务的权重,表示第个源任务的全局模型,、超参数;在构建所述低精度模型的过程中,采用样本径向基函数方法构造源任务的全局模型,为:;其中,表示第个源任务所包含的样本点数量,表示基函数系数,表示高斯基函数。
9.在其中一个实施例,所述权重的计算过程为:;其中,表示目标任务与所述知识库第个源任务的相似度。
10.在其中一个实施例,所述超参数、的计算过程为:;其中,表示第个源任务的均方根误差,表示第个源任务的均方根误差为与超参数、相关的函数;第个源任务的均方根误差具体为:;其中,表示第个源任务中第个样本点的预测误差,即低精度模型对第个源任务中第个样本点的预测输出与第个样本点的真实输出间的误差。
11.在其中一个实施例,步骤3中,所述多精度预测模型为:
12.其中,表示多精度预测模型,表示低精度模型,表示误差模型。
13.在其中一个实施例,步骤4中,判断所述多精度预测模型是否收敛的过程具体为:当所述多精度预测模型连续m次未搜索到更优的高精度样本点,则判定所述多精度预测模型已收敛,否则判定所述多精度预测模型未收敛。
14.在其中一个实施例,步骤4中,将所述多精度预测模型当前最优的高精度样本点纳入所述误差模型,并更新所述误差模型与所述多精度预测模型,具体为:将所述多精度预测模型当前最优的高精度样本点代入所述多精度预测模型,得到多精度预测模型预测输出;仿真得到所述多精度预测模型当前最优的高精度样本点的真实输出,将该真实输出与所述多精度预测模型预测输出间的误差纳入所述误差模型训练集中,完成所述误差模型的更新,进而完成所述多精度预测模型的更新。
15.在其中一个实施例,步骤4中,采用粒子群算法搜索所述多精度预测模型当前最优的高精度样本点。
16.与现有技术相比,本发明具有如下有益技术效果:1.本发明通过相似性度量选择相似的喉栓式变推力发动机喉栓喷管设计源任务并从中转移知识,有效避免了优化初期对设计空间的探索,优化速度快、寻优能力强、节约了大量的时间成本,具有更高的效率和性能,能有效满足喉栓式变推力发动机推力性能优化的需求;2.本发明通过从喉栓喷管设计源任务中提取的低精度模型和表示源任务和目标任务之间区别的误差模型构建多精度近似模型来替代常规近似模型,由于先验知识的存在,后续采样过程能够更倾向于潜在最优区域的开发,进一步提高了算法效率。
附图说明
17.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现
有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
18.图1为本发明实施例中喉栓式变推力发动机喉栓喷管构型设计知识迁移优化方法的流程图;图2为本发明实施例中喉栓式喷管构型的示意图;图3为本发明实施例中喉栓式喷管最大推力优化收敛曲线示意图,其中,sao为序列近似优化方法得到的喉栓式喷管最大推力优化收敛曲线示意图,mfm-kto为本发明方法得到的喉栓式喷管最大推力优化收敛曲线示意图;图4为本发明实施例中本发明方法得到的喉栓式喷管最优构型示意图;图5为本发明实施例中喉栓式喷管最优构型的马赫数云图;图6为本发明实施例中喉栓式喷管最优构型的压力云图。
19.本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
20.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
21.另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
22.本实施例公开了一种喉栓式变推力发动机喉栓喷管构型设计知识迁移优化方法,该方法首先提出任务相似度评估准则,通过计算知识库中的每个喉栓式变推力发动机喉栓喷管型面设计任务与目标任务的相似性,选择其中相似性最大的多个任务作为源任务,进行知识的迁移并避免负迁移。随后提出了一种由低精度模型和误差模型叠加得到多精度预测模型来构建目标任务的近似模型,采用径向基函数,基于源任务训练超参数,提高模型泛化性能。最后针对计算密集型问题,提出了基于多精度预测模型驱动的知识迁移优化方法。选择多精度预测模型的最优值作为填充样本,加快收敛速度,迭代更新误差模型,直到满足优化终止条件。在喉栓喷管构型设计源任务的先验指导下,可以避免传统优化方法中对设计空间的初始探索,提高算法效率,实现推力性能的高效优化。
23.参考图1,本实施例中的喉栓式变推力发动机喉栓喷管构型设计知识迁移优化方法具体包括如下步骤:步骤1,基于相似性度量准则,在知识库中选取多个喉栓式变推力发动机喉栓喷管构型设计的源任务;步骤2,基于选取的源任务构建目标域的低精度模型,并基于高精度样本点与低精度模型的预测误差构建误差模型;步骤3,基于低精度模型与误差模型构建目标域的多精度预测模型;步骤4,搜索多精度预测模型当前最优的高精度样本点,并判断多精度预测模型是
否收敛:若是,则将多精度预测模型历史最优的高精度样本点作为喉栓式变推力发动机喉栓喷管构型的设计结果并输出;否则,将多精度预测模型当前最优的高精度样本点纳入误差模型,并更新误差模型与多精度预测模型后,再次进行步骤4,直至多精度预测模型收敛。
24.本实施例在喉栓式变推力发动机喉栓喷管构型设计的过程中,采用最大推力作为目标函数,即将样本点代入低精度模型与多精度预测模型的输出均为推力值,而样本点的真实输出则为对样本点进行实际仿真得到的推力值。其中,一个样本点包括一个或多个设计变量,设计变量即为喉栓式变推力发动机喉栓喷管的某一尺寸参数或性能参数,例如喷管喉部半径、初始膨胀角、末端膨胀角、轴头长度、过渡轴半径、轴头半径与轴径,也可以将喷管收敛角、喷管收敛半径、喷管入口直径与喷管喉径等纳入设计变量,步骤3中的目标域即为喉栓式变推力发动机喉栓喷管某个尺寸参数或性能参数的取值范围。
25.本实施例中,通过相似性度量准则在知识库中选取多个喉栓式变推力发动机喉栓喷管构型设计的源任务,其具体实施过程为:首先,对于知识库中的k个任务,提取这些任务与目标任务的归一化元特征分别为和,其中,归一化元特征可选择喉栓式变推力发动机喉栓喷管的工作压强、膨胀比与膨胀段相对长度中的一个或多个;其次,在提取归一化元特征后,计算当前喉栓式变推力发动机喉栓喷管构型设计的目标任务与知识库中每一任务的相似度为:(1)其中,表示目标任务与知识库第个任务的相似度,表示知识库第个任务的元特征,表示目标任务与知识库第个任务的范数,一般取2,表示计算目标任务与知识库第个任务的范数,表示知识库任务的数量;最后,在知识库中选取个与目标任务相似度最大的任务作为源任务。本实施例中,选取的源任务数量设置在3~5个。
26.本实施例中,基于选取的源任务所构建目标域的低精度模型为:(2)其中,表示样本点,表示低精度模型对于样本点的目标函数值输出,表示第个源任务的权重,表示第个源任务的全局模型,、超参数。
27.第个源任务的权重的计算过程为:(3)
其中,表示目标任务与知识库第个源任务的相似度。
28.在具体实施过程中,采用样本径向基函数方法构造源任务的全局模型,径向基函数采用简单基函数进行加权叠加实现对新样本点的预测,为:(4)其中,表示第个源任务所包含的样本点数量,表示基函数系数,表示高斯基函数,把未知样本点到已知样本点的欧式距离当作自变量,具体形式如下:(5)其中,为形状参数。形状参数值确定后,为了计算出对应的基函数系数,采用插值条件或者最小二乘拟合,将个样本点代入近似模型的基本形式(4)中,通过引入插值条件,可得关于基函数系数的线性方程组为:(6)通过求解上述线性方程组,可得基函数系数为:(7)其中,表示基函数系数向量,表示径向基方法中带入所有样本输入计算所得的系数矩阵,矩阵中每一个元素采用式(6)计算,表示所有样本点的目标函数值向量。
29.通常情况下,过于密集的样本点会导致径向基模型训练过程中产生龙格现象,导致模型精度下降,因此本实施例在系数矩阵对角线叠加,其中,表示平滑因子,表示单位矩阵。
30.超参数、即为上述径向基模型中的形状参数和平滑因子,本实施例中,超参数、的计算过程为:(8)其中,表示第个源任务的均方根误差,表示第个源任务的均方根误差为与超参数、相关的函数;第个源任务的均方根误差具体为:(9)
其中,表示第个源任务中第个样本点的预测误差,即低精度模型对第个源任务中第个样本点的预测输出与第个样本点的真实输出间的误差。
31.在具体实施过程中,可以通过交叉验证得到所有样本点的预测误差。为了提高算法效率,本实施例采用快速留一交叉验证法通过式(8)快速获取预测误差,为:(10)其中,是矩阵的对角元素。
32.在基于源任务得到目标域的低精度模型后,即可基于低精度模型叠加误差模型得到目标域的多精度预测模型,为:(11)其中,表示多精度预测模型,表示误差模型。
33.本实施例中,误差模型同样采用样本径向基函数方法构造,输入为高精度样本点,输出则为高精度样本点的真实输出与多精度预测模型预测输出间的误差,其结构形式与式(4)相同,因此本实施例不再对其赘述。
34.在具体实施过程中,采用粒子群算法搜索多精度预测模型当前最优的高精度样本点,其具体实施过程为所属领域的常规手段,因此本实施例中不再对其赘述。而判断多精度预测模型是否收敛的过程具体为:当多精度预测模型连续m次未搜索到更优的高精度样本点,则判定多精度预测模型已收敛,否则判定多精度预测模型未收敛。其中,搜索到更优的高精度样本点自指的是新搜索到的高精度样本点的真实目标函数值优于所有历史高精度样本点的真实目标函数值。
35.在具体实施过程中,将多精度预测模型当前最优的高精度样本点纳入误差模型,并更新误差模型与多精度预测模型,具体为:首先将多精度预测模型当前最优的高精度样本点代入多精度预测模型,得到多精度预测模型预测输出;然后仿真得到多精度预测模型当前最优的高精度样本点的真实输出,再将该真实输出与多精度预测模型预测输出间的误差纳入误差模型训练集中,完成误差模型的更新,进而完成多精度预测模型的更新。
36.下面结合具体的示例对本实施例中的喉栓式变推力发动机喉栓喷管构型设计知识迁移优化方法作出进一步的说明。
37.以喉栓式变推力固体发动机喉栓和喷管构型设计为例,优化目标为最大推力最大。喉栓式喷管的构型设计参数如图2所示。选择喉栓式喷管的构型参数作为设计变量,具体参数及其变化范围如表1所示。
38.表1 喉栓式喷管设计变量
39.考虑到问题的复杂性和样本评估的计算成本,首先生成八个具有50个样本点的任务来填充知识库,这些样本点服从均匀分布。每个任务的元特征均是在参数空间中随机生成的,具体值如表2所示。
40.表2 知识库和目标任务设置
41.针对喉栓式固体发动机喉栓喷管构型设计问题,首先采用相似度度量评估源域任务与目标任务的相似度,选择3~5个任务构建目标任务的低精度模型,然后通过叠加误差模型得到目标域任务的多精度预测模型,通过潜在最优采样不断更新误差模型直到定位全局最优点,具体步骤如下:1)、评估源域任务与目标任务的相似度,并从中选择3个任务以备知识迁移;2)、对3个选取的任务构建目标域任务的低精度预测模型;3)、针对低精度模型进行潜在最优采样,并且所得高低精度模型的误差构建误差模型,与低精度模型叠加构成目标域任务的多精度预测模型;
4)、算法收敛则停止算法,否则针对多精度预测模型在此进行潜在最优采样继续更新误差模型与多精度预测模型。
42.对于上述优化问题,从八个相似度最大的任务中选择三个(根据表2,分别为





)作为源任务。所提出的多精度预测模型驱动的知识迁移优化方法与一般序列近似优化方法的收敛过程如图3所示。其中序列近似优化方法的初始样本大小设置为15。从图3中可以看出,从源任务中提取的先验知识的指导下,本实施例方法经过6次调用高精度仿真模型后收敛。由于序列近似优化方法必须要对设计空间进行初步探索,这导致了额外的计算成本,最终迭代18次以上才收敛。此外,本实施例方法得到的最优解要优于序列近似优化方法获得的结果。优化的喉栓式喷管构型配置如图4所示,最优构型数值仿真的马赫数和压力云图如图5、图6所示。
43.以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

技术特征:
1.一种喉栓式变推力发动机喉栓喷管构型设计知识迁移优化方法,其特征在于,包括如下步骤:步骤1,基于相似性度量准则,在知识库中选取多个喉栓式变推力发动机喉栓喷管构型设计的源任务;步骤2,基于选取的源任务构建目标域的低精度模型,并基于高精度样本点与低精度模型的预测误差构建误差模型;步骤3,基于所述低精度模型与所述误差模型构建目标域的多精度预测模型;步骤4,搜索所述多精度预测模型当前最优的高精度样本点,并判断所述多精度预测模型是否收敛:若是,则将所述多精度预测模型历史最优的高精度样本点作为喉栓式变推力发动机喉栓喷管构型的设计结果并输出;否则,将所述多精度预测模型当前最优的高精度样本点纳入所述误差模型,并更新所述误差模型与所述多精度预测模型后,再次进行步骤4,直至所述多精度预测模型收敛。2.根据权利要求1所述的喉栓式变推力发动机喉栓喷管构型设计知识迁移优化方法,其特征在于,步骤1中,选取所述源任务的过程具体为:计算当前喉栓式变推力发动机喉栓喷管构型设计的目标任务与所述知识库中每一任务的相似度为:;其中,表示目标任务与所述知识库第个任务的相似度,表示所述知识库第个任务的元特征,表示目标任务的元特征,表示目标任务与所述知识库第个任务的范数,表示计算目标任务与所述知识库第个任务的范数,表示所述知识库任务的数量;在所述知识库中选取个与目标任务相似度最大的任务作为所述源任务。3.根据权利要求1所述的喉栓式变推力发动机喉栓喷管构型设计知识迁移优化方法,其特征在于,步骤2中,所述基于选取的源任务构建目标域的低精度模型,为:;其中,表示低精度模型,表示样本点,表示源任务的数量,表示第个源任务的权重,表示第个源任务的全局模型,、超参数;在构建所述低精度模型的过程中,采用样本径向基函数方法构造源任务的全局模型,为:
;其中,表示第个源任务所包含的样本点数量,表示基函数系数,表示高斯基函数。4.根据权利要求3所述的喉栓式变推力发动机喉栓喷管构型设计知识迁移优化方法,其特征在于,所述权重的计算过程为:;其中,表示目标任务与所述知识库第个源任务的相似度。5.根据权利要求3所述的喉栓式变推力发动机喉栓喷管构型设计知识迁移优化方法,其特征在于,所述超参数、的计算过程为:;其中,表示第个源任务的均方根误差,表示第个源任务的均方根误差为与超参数、相关的函数;第个源任务的均方根误差具体为:;其中,表示第个源任务中第个样本点的预测误差,即低精度模型对第个源任务中第个样本点的预测输出与第个样本点的真实输出间的误差。6.根据权利要求1至5任一项所述的喉栓式变推力发动机喉栓喷管构型设计知识迁移优化方法,其特征在于,步骤3中,所述多精度预测模型为:;其中,表示多精度预测模型,表示低精度模型,表示误差模型。7.根据权利要求1至5任一项所述的喉栓式变推力发动机喉栓喷管构型设计知识迁移优化方法,其特征在于,步骤4中,判断所述多精度预测模型是否收敛的过程具体为:当所述多精度预测模型连续m次未搜索到更优的高精度样本点,则判定所述多精度预测模型已收敛,否则判定所述多精度预测模型未收敛。8.根据权利要求1至5任一项所述的喉栓式变推力发动机喉栓喷管构型设计知识迁移优化方法,其特征在于,步骤4中,将所述多精度预测模型当前最优的高精度样本点纳入所述误差模型,并更新所述误差模型与所述多精度预测模型,具体为:将所述多精度预测模型当前最优的高精度样本点代入所述多精度预测模型,得到多精度预测模型预测输出;
仿真得到所述多精度预测模型当前最优的高精度样本点的真实输出,将该真实输出与所述多精度预测模型预测输出间的误差纳入所述误差模型训练集中,完成所述误差模型的更新,进而完成所述多精度预测模型的更新。9.根据权利要求1至5任一项所述的喉栓式变推力发动机喉栓喷管构型设计知识迁移优化方法,其特征在于,步骤4中,采用粒子群算法搜索所述多精度预测模型当前最优的高精度样本点。

技术总结
本发明公开了一种喉栓式变推力发动机喉栓喷管构型设计知识迁移优化方法,包括:基于相似性度量选取源任务,并构建低精度模型,基于高精度样本点与低精度模型的预测误差构建误差模型,得到多精度预测模型;搜索多精度预测模型当前最优的高精度样本点,并判断多精度预测模型是否收敛:若是,则将历史最优的高精度样本点作为设计结果并输出;否则,将高精度样本点纳入误差模型,并更新误差模型与多精度预测模型后继续搜索。本发明应用于发动机设计技术领域,通过从源任务中转移知识,有效优化初期对设计空间的探索,优化速度快、寻优能力强、节约了大量的时间成本,具有更高的效率和性能,能有效满足发动机推力性能优化的需求。能有效满足发动机推力性能优化的需求。能有效满足发动机推力性能优化的需求。


技术研发人员:张为华 李佳欣 杨家伟 武泽平 王东辉 张德权 高经纬
受保护的技术使用者:中国人民解放军国防科技大学
技术研发日:2023.08.18
技术公布日:2023/9/20
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

飞机超市 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

相关推荐