一种多光谱组合的皮肤基底细胞癌识别方法

未命名 10-09 阅读:93 评论:0


1.本发明属于光谱分析领域,涉及皮肤基底细胞癌的光谱识别技术,具体是一种多光谱组合的皮肤基底细胞癌识别方法。


背景技术:

2.基底细胞癌是常见的非黑色素细胞癌,其发病原因主要与年龄、日晒等有关。基底细胞癌临床表现多样化,很容易与色素痣、脂溢性角化症、鳞状细胞癌、黑素瘤等皮肤病变混淆,从而造成误诊,延误治疗。
3.目前皮肤基底细胞癌的识别方法主要是通过图像识别,使用大量带有标签的皮肤组织病变病理图像训练神经网络模型,通过迭代训练获取能够识别皮肤基底细胞癌的分类器,进而完成皮肤基底细胞癌的识别。现有技术通过图像识别皮肤基底细胞癌时,由于其临床表现的多样化,不仅需要大量的训练数据,而且还需要保证病理图像具有非常高的精度;但实际操作过程中很难满足上述条件,导致皮肤基底细胞癌的识别精度不高。
4.本发明提供一种多光谱组合的皮肤基底细胞癌识别方法,以解决上述问题。


技术实现要素:

5.本发明旨在至少解决现有技术中存在的技术问题之一;为此,本发明提出了一种多光谱组合的皮肤基底细胞癌识别方法,用于解决现有技术在进行皮肤基底细胞癌识别时,通过病理图像难以准确识别其多样化的临床表现,影响皮肤基底细胞癌识别精度的技术问题。
6.为实现上述目的,本发明的第一方面提供了一种多光谱组合的皮肤基底细胞癌识别方法,包括:获取正常皮肤组织和已知诊断结果的皮肤基底细胞癌对应皮肤组织的多光谱数据;按照皮肤组织的血液含量对多光谱数据分类,整合分类结果与血液含量,获取若干光谱数据组;基于预设波长提取光谱数据组,获取漫反射光谱组和荧光光谱组;分别获取漫反射光谱组和荧光光谱组对应的光谱特征;将光谱数据组对应的漫反射特征、荧光特征与血液含量整合,结合光谱数据组对应的组织标签生成分类训练数据;基于分类训练数据训练获取分类器,通过分类器识别分析待识别的皮肤组织。
7.皮肤基底细胞癌其临床表现多样化,从表面上很容易与其他皮肤病混淆。现有通过图像识别技术来识别皮肤基底细胞癌,很难区分皮肤基底细胞癌与其他皮肤病在图像上的区别特征,也就难以训练出满足精度要求的分类器,进而影响皮肤基底细胞癌的识别精度。
8.本发明则从光谱数据的角度来进行识别,通过实验可知皮肤基底细胞癌在不同血液含量时具有不同的光谱特征,而且相对于正常皮肤具有明显的关联性和区别,利用这些关联与区别训练分类器;将待识别的皮肤组织与正常皮肤组织进行比较即可获取光谱特征,通过训练的分类器可以实现皮肤基底细胞癌的识别。本发明技术方案的识别准确度显然高于现有技术。
9.本发明中用到的多光谱数据主要包括漫反射光谱数据和可见光荧光光谱数据。漫反射光谱数据是将正常皮肤和皮肤基底细胞癌对应皮肤直接使用蒙特卡罗程序,分别计算皮肤的漫反射系数,在480-700nm范围内间隔10nm得到23组数据,组成各自的漫反射光谱数据。可见光荧光光谱数据是在可见光波段内激发皮肤组织获取的荧光光谱数据,还包括荧光逃逸函数。漫反射光谱数据和可见光荧光光谱数据(包括荧光逃逸函数)的获取具体可参考西北大学南妙晴发表的硕士论文《皮肤基底细胞癌组织的光谱特性与理论研究》,该论文记载了漫反射光谱数据和可见光荧光光谱数据详细的获取步骤。
10.优选的,所述按照皮肤组织的血液含量对多光谱数据分类,包括:获取并排序多光谱数据对应皮肤组织的血液含量,验证血液含量的数值没有出现突变之后整合成血液组;按照血液组中的血液含量对多光谱数据进行分类,获取分类结果。
11.实验表明皮肤组织中的血液含量会对光谱吸收特性产生影响,因此在皮肤基底细胞癌的识别过程中需要考虑血液含量的影响。每个皮肤组织对应一组多光谱数据,则其对应的血液含量也是唯一的。将多光谱数据中的血液含量进行排序,判断排序后的血液含量是否发生突变;这里的突变主要是指相邻血液含量的差值是否相等,可建立血液含量的变化曲线来判断。血液含量发生突变,则说明至少有一组血液含量没有对应的多光谱数据,则需要进行对多光谱数据进行补充,才能保证分类器的适用范围。
12.在血液含量数值没有发生突变之后,则按照血液含量对多光谱数据进行归类。则每个血液含量均至少对应两条多光谱数据,每条多光谱数据均包括漫反射光谱数据和可见光荧光光谱数据;为了方便后续光谱特征的获取,每个血液含量对应的两条多光谱数据中的其中一条为正常皮肤的多光谱数据,另外一条为皮肤基底细胞癌对应皮肤的多光谱数据。
13.优选的,所述基于预设波长提取光谱数据组,包括:在标准波长中提取至少一个预设波长;基于预设波长从光谱数据组中提取对应的漫反射光谱数据和可见光荧光光谱数据,结合血液含量整合生成漫反射光谱组和荧光光谱组。
14.本发明标准波长范围根据可见光波长设置,具体为480-700nm。从标准波长范围中提取预设波长,则预设波长可以为480-700nm;当然也可以是480-520nm、540-580nm或者580-620nm。根据预设波长对多光谱数据进行提取,获取对应波长的漫反射光谱数据和可见光荧光光谱数据。也就是说,每个漫反射光谱组中包括血液含量、以及该血液含量对应正常皮肤和癌变皮肤的漫反射光谱数据(根据预设波长提取后的);每个荧光光谱组包括血液含量以及对应正常皮肤和癌变皮肤的可见光荧光光谱数据。
15.优选的,所述获取漫反射光谱组和荧光光谱组对应的光谱特征,包括:获取漫反射光谱组中癌变皮肤组织和正常皮肤组织对应的光谱曲线,结合曲线积分方式获取两条曲线随波长变化的光谱差别,标记为漫反射特征;以及获取荧光光谱组中癌变皮肤组织和正常皮肤组织对应的荧光逃逸函数曲线,结合曲线积分方式获取两条曲线随波长变化的光谱差别,标记为荧光特征。
16.本发明的光谱特征主要是正常皮肤和癌变皮肤的漫反射光谱数据和可见光荧光光谱数据的差别。本发明的漫反射特征可通过至少一个预设波长内癌变皮肤与正常皮肤的漫反射光谱差值来表示,当然还可以结合漫反射特征曲线的变化趋势来表达。而对于荧光特征同样可通过至少一个预设波长内癌变皮肤与正常皮肤的可见光荧光光谱差值来表示,
也可以引入癌变皮肤组织深度辅助表达。
17.优选的,所述将光谱数据组对应的漫反射特征、荧光特征与血液含量整合,包括:提取光谱数据组的血液含量,以及获取的光谱特征;将血液含量和对应的光谱特征拼接整合,生成模型输入数据。
18.优选的,所述结合光谱数据组对应的组织标签生成分类训练数据,包括:判断光谱数据组对应的皮肤组织属性是否正常;是,则将组织标签设置为0;否,则将组织标签设置为1;将光谱数据组的模型输入数据和组织标签关联,生成分类训练数据。
19.将光谱数据组中的血液含量、光谱特征整合起来,生成模型输入数据;根据该光谱数据组对应皮肤组织设置组织标签,作为模型输出数据;用0或者1来区分组织标签是否正常。之后,将模型输入数据和模型输出数据整合成分裂训练数据,对分类器进行训练;分类器可以基于支持向量机模型或神经网络模型构建。
20.优选的,所述通过分类器识别分析待识别的皮肤组织,包括:获取待识别皮肤组织的多光谱数据,提取多光谱数据的光谱特征并与待识别皮肤组织对应的血液含量拼接整合成光谱特征序列;将光谱特征序列输入至训练好的分类器中,获取对应输出的组织标签;当组织标签为1时,判定待识别皮肤组织出现皮肤基底细胞癌;否,则为正常皮肤。
21.存在待识别皮肤组织时,则获取该待识别皮肤组织的血液含量和在预设时长内的光谱特征,整合成光谱特征序列之后输入至训练好的分类器中,根据输出的组织标签可以判断该待识别皮肤组织是否发生癌变。
22.与现有技术相比,本发明的有益效果是:
23.1.本发明分别获取漫反射光谱组和荧光光谱组对应的光谱特征;将光谱数据组对应的漫反射特征、荧光特征与血液含量整合,结合光谱数据组对应的组织标签生成分类训练数据;本发明根据皮肤组织的光谱特征来识别皮肤基底细胞癌,较现有技术具有更高的识别精度。
24.2.本发明根据癌变皮肤组织和正常皮肤组织对应光谱曲线之间的光谱差别来分别获取漫反射特征和荧光特征,根据典型特征来识别,降低数据处理量;而且引入bcc组织深度作为分类器的输出数据,实现皮肤基底细胞癌的状态识别。
附图说明
25.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
26.图1为本发明的方法步骤示意图;
27.图2为本发明的血液含量突变原理示意图;
28.图3为本发明的同一血液含量对应的正常皮肤与癌变皮肤的漫反射光谱强度示意图。
具体实施方式
29.下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实
施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
30.请参阅图1,本发明第一方面实施例提供了一种多光谱组合的皮肤基底细胞癌识别方法,包括:获取正常皮肤组织和已知诊断结果的皮肤基底细胞癌对应皮肤组织的多光谱数据;按照皮肤组织的血液含量对多光谱数据分类,整合分类结果与血液含量,获取若干光谱数据组;基于预设波长提取光谱数据组,获取漫反射光谱组和荧光光谱组;分别获取漫反射光谱组和荧光光谱组对应的光谱特征;将光谱数据组对应的漫反射特征、荧光特征与血液含量整合,结合光谱数据组对应的组织标签生成分类训练数据;基于分类训练数据训练获取分类器,通过分类器识别分析待识别的皮肤组织。
31.本实施例的第一步是获取正常皮肤组织和已知诊断结果的皮肤基底细胞癌对应皮肤组织的多光谱数据;按照皮肤组织的血液含量对多光谱数据分类,整合分类结果与血液含量,获取若干光谱数据组。
32.假设目前存在正常的已知诊断结果的皮肤基底细胞癌对应皮肤组织的若干多光谱数据。先判断这些多光谱数据是否满足血液含量的要求,先提取各多光谱数据对应的血液含量,对血液含量进行从小到大排序。排序之后取相邻血液浓度差值,可以获取若干浓度差值,获取若干浓度差值的浓度差值曲线如图2所示。图2中第一象限内的横向实线为不存在突变,而横向实线在a点出现向上突变(斜向下的虚线部分)则判断存在突变;如排序后的血液含量为0.2、0.3、0.4、0.5,则该组血液含量不存在突变;若排序后的血液含量为0.2、0.3、0.5,则在0.3和0.5之间发生突变,理论上需要补充血液含量为0.4时对应的多光谱数据。
33.在排序后的血液含量满足要求时,将血液含量与对应的多光谱数据进行关联拼接,获取若干光谱数据组;也就是说光谱数据组中每个血液含量均至少对应一条多光谱数据,也可以理解为至少对应一条漫反射光谱数据和一条可见光荧光光谱数据。
34.本实施例的第二步是基于预设波长提取光谱数据组,获取漫反射光谱组和荧光光谱组;分别获取漫反射光谱组和荧光光谱组对应的光谱特征。
35.请参阅图3,图3中第一象限的横向实线为正常皮肤的漫反射光谱强度,横向虚线为皮肤基底细胞癌的漫反射光谱强度。预设波长确定为480-700,假设癌变皮肤组织对应光谱曲线的函数为f(λ),正常皮肤组织对应光谱曲线的函数为f(λ),则漫反射特征=∫|f(λ)-f(λ)|,λ∈[480,700],∫为积分符号。荧光特征的获取可参考漫反射特征的获取方式。
[0036]
在另外一些优选的实施例中,可以确定多个预设波长,如[b1,b2],[b2,b3]和[b3,b4],具体可根据光谱曲线的变化趋势来确定。通过积分方式可以获取一个漫反射光谱组的三个漫反射特征,将这三个漫反射特征整合成一个总的漫反射特征。
[0037]
本实施例的第三步是将光谱数据组对应的漫反射特征、荧光特征与血液含量整合,结合光谱数据组对应的组织标签生成分类训练数据;基于分类训练数据训练获取分类器,通过分类器识别分析待识别的皮肤组织。
[0038]
将第一步和第二步中获取的血液含量与对应的至少一组光谱特征(漫反射特征和对应的荧光特征)整合成模型输入数据,其整合过程包括数据拼接和归一化处理等。根据模型输入数据对应的皮肤组织是否癌变设置组织标签,这样可以获取分类训练数据,进而完
成分类器的训练。
[0039]
在获取待识别皮肤组织时,提取其血液含量、漫反射特征和荧光特征组成光谱特征序列,该光谱特征序列与分类器训练时的模型输入数据内容属性一致。将光谱特征序列输入至分类器中,根据得到的组织标签即可判断待识别皮肤组织是否异常,完成皮肤基底细胞癌的识别。
[0040]
在另外一些优选的实施例中,荧光特征还可以包括皮肤基底细胞癌的组织深度(可用于评价癌变状态),也就是bcc组织深度;bcc组织深度对荧光逃逸函数具有很大的影响。在设置分类训练数据中模型输入数据对应的组织标签时,测量模型输入数据对应皮肤组织的bcc组织深度,与组织标签结合作为分类器的输出数据。则在后续对待识别皮肤组织进行识别时,不仅可以识别出皮肤基底细胞癌,而且可以根据光谱数据识别出其状态。
[0041]
上述公式中的部分数据是去除量纲取其数值计算,公式是由采集的大量数据经过软件模拟得到最接近真实情况的一个公式;公式中的预设参数和预设阈值由本领域的技术人员根据实际情况设定或者通过大量数据模拟获得。
[0042]
本发明的工作原理:获取正常皮肤组织和已知诊断结果的皮肤基底细胞癌对应皮肤组织的多光谱数据;按照皮肤组织的血液含量对多光谱数据分类,整合分类结果与血液含量,获取若干光谱数据组。基于预设波长提取光谱数据组,获取漫反射光谱组和荧光光谱组;分别获取漫反射光谱组和荧光光谱组对应的光谱特征。将光谱数据组对应的漫反射特征、荧光特征与血液含量整合,结合光谱数据组对应的组织标签生成分类训练数据;基于分类训练数据训练获取分类器,通过分类器识别分析待识别的皮肤组织。
[0043]
以上实施例仅用以说明本发明的技术方法而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方法进行修改或等同替换,而不脱离本发明技术方法的精神和范围。

技术特征:
1.一种多光谱组合的皮肤基底细胞癌识别方法,其特征在于,包括:获取正常皮肤组织和已知诊断结果的皮肤基底细胞癌对应皮肤组织的多光谱数据;按照皮肤组织的血液含量对多光谱数据分类,整合分类结果与血液含量,获取若干光谱数据组;其中,多光谱数据包括漫反射光谱数据和可见光荧光光谱数据;基于预设波长提取光谱数据组,获取漫反射光谱组和荧光光谱组;分别获取漫反射光谱组和荧光光谱组对应的光谱特征;其中,光谱特征基于癌变皮肤组织和正常皮肤组织的光谱数据关系获取,光谱特征包括漫反射特征或者荧光特征;将光谱数据组对应的漫反射特征、荧光特征与血液含量整合,结合光谱数据组对应的组织标签生成分类训练数据;基于分类训练数据训练获取分类器,通过分类器识别分析待识别的皮肤组织;其中,组织标签用于区别皮肤组织是否正常。2.根据权利要求1所述的一种多光谱组合的皮肤基底细胞癌识别方法,其特征在于,所述按照皮肤组织的血液含量对多光谱数据分类,包括:获取并排序多光谱数据对应皮肤组织的血液含量,验证血液含量的数值没有出现突变之后整合成血液组;其中,出现突变则对多光谱数据进行补充;按照血液组中的血液含量对多光谱数据进行分类,获取分类结果;其中,分类结果中每个血液含量对应至少两条多光谱数据。3.根据权利要求1所述的一种多光谱组合的皮肤基底细胞癌识别方法,其特征在于,所述基于预设波长提取光谱数据组,包括:在标准波长中提取至少一个预设波长;其中,标准波长范围为480-700nm;基于预设波长从光谱数据组中提取对应的漫反射光谱数据和可见光荧光光谱数据,结合血液含量整合生成漫反射光谱组和荧光光谱组。4.根据权利要求1所述的一种多光谱组合的皮肤基底细胞癌识别方法,其特征在于,所述获取漫反射光谱组和荧光光谱组对应的光谱特征,包括:获取漫反射光谱组中癌变皮肤组织和正常皮肤组织对应的光谱曲线,结合曲线积分方式获取两条曲线随波长变化的光谱差别,标记为漫反射特征;以及获取荧光光谱组中癌变皮肤组织和正常皮肤组织对应的荧光逃逸函数曲线,结合曲线积分方式获取两条曲线随波长变化的光谱差别,标记为荧光特征。5.根据权利要求1所述的一种多光谱组合的皮肤基底细胞癌识别方法,其特征在于,所述将光谱数据组对应的漫反射特征、荧光特征与血液含量整合,包括:提取光谱数据组的血液含量,以及获取的光谱特征;将血液含量和对应的光谱特征拼接整合,生成模型输入数据;其中,模型输入数据为分类器训练的输入数据。6.根据权利要求5所述的一种多光谱组合的皮肤基底细胞癌识别方法,其特征在于,所述结合光谱数据组对应的组织标签生成分类训练数据,包括:判断光谱数据组对应的皮肤组织属性是否正常;是,则将组织标签设置为0;否,则将组织标签设置为1;将光谱数据组的模型输入数据和组织标签关联,生成分类训练数据;其中,组织标签为分类器训练的输出数据。7.根据权利要求6所述的一种多光谱组合的皮肤基底细胞癌识别方法,其特征在于,所
述通过分类器识别分析待识别的皮肤组织,包括:获取待识别皮肤组织的多光谱数据,提取多光谱数据的光谱特征并与待识别皮肤组织对应的血液含量拼接整合成光谱特征序列;将光谱特征序列输入至训练好的分类器中,获取对应输出的组织标签;当组织标签为1时,判定待识别皮肤组织出现皮肤基底细胞癌;否,则为正常皮肤。

技术总结
本发明公开了一种多光谱组合的皮肤基底细胞癌识别方法,涉及光谱分析技术领域,解决了现有技术通过病理图像难以准确识别其多样化的临床表现,影响皮肤基底细胞癌识别精度的技术问题;本发明获取漫反射光谱组和荧光光谱组对应的光谱特征;将光谱数据组对应的漫反射特征、荧光特征与血液含量整合,结合光谱数据组对应的组织标签生成分类训练数据;本发明根据皮肤组织的光谱特征来识别皮肤基底细胞癌,较现有技术具有更高的识别精度;本发明根据癌变皮肤组织和正常皮肤组织对应光谱曲线之间的光谱差别获取漫反射特征和荧光特征,根据典型特征来识别,降低数据处理量;而且引入BCC组织深度作为分类器的输出数据,实现皮肤基底细胞癌的状态识别。胞癌的状态识别。胞癌的状态识别。


技术研发人员:刘洁
受保护的技术使用者:中国医学科学院北京协和医院
技术研发日:2023.06.07
技术公布日:2023/10/7
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

飞机超市 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

相关推荐