一种钢结构焊接质量检测方法与流程

未命名 10-19 阅读:101 评论:0


1.本发明涉及钢结构工程领域,特别涉及一种钢结构焊接质量检测方法。


背景技术:

2.钢结构是由钢制材料组成的结构,是主要的建筑结构类型之一,焊接是钢结构之间的连接的主要方式之一,焊接的强度对钢结构牢固性影响重大,所以需要对焊接质量进行检测,以保证钢结构建筑的安全性。通常采用的检测手段包括人工裸眼检测、基于图像处理的方法进行检测、射线检测、超声波检测等。人工裸眼检测准确性低、效率低下,射线检测、超声波检测虽然能够实现焊接内部的检测,但对于钢结构建筑通常处于户外环境,射线检测、超声波检测需要配备成套的设备,难以适应户外钢结构建筑的检测。基于图像处理的检测方法设备要求简单,应用方便,能够很好的适应户外钢结构建筑的检测。例如专利cn113989280b公开的基于图像处理技术的钢结构焊接裂纹缺陷检测方法。裂纹、弧坑、焊瘤均是常见的焊接缺陷,对焊接质量具有较大的危害,尤其是裂纹缺陷。基于图像处理检测裂纹时,裂纹位置通常由于比正常焊接区域偏暗,导致其与钢结构基材之间的灰度值接近,导致基于图像处理的方法不容易检测出裂纹,尤其是细长的裂纹。
3.所以,现在有必要对现有技术进行改进,以提供更可靠的方案。


技术实现要素:

4.本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种钢结构焊接质量检测方法。
5.为解决上述技术问题,本发明采用的技术方案是:一种钢结构焊接质量检测方法,包括以下步骤:
6.s1、采用白色的着色涂料对覆盖焊接位置的取样区域进行喷涂,2-30min后擦拭喷涂区域表面,去除多余的涂料;
7.s2、采用ccd相机通过俯视视角采集覆盖整个取样区域的原始图像i,然后进行灰度处理,得到原始灰度图像ig;
8.s3、采用第一阈值g
t1
对原始灰度图像ig进行阈值分割,提取像素值大于或等于g
t1
的区域,得到焊接区域灰度图像p;
9.s4、采用第二阈值g
t2
对焊接区域灰度图像p进行阈值分割,分割像素值大于或等于g
t2
的区域,作为缺陷区域r1,然后对于每个缺陷区域r1进行裂纹缺陷区域rw、弧坑缺陷区域rh的分类;
10.s5、提取像素值在g
t1-g
t2
之间的区域,作为缺陷区域r2,然后对于每个缺陷区域区域r2进行弧坑缺陷区域rh和焊瘤缺陷区域ru的分类;
11.s6、根据步骤s4和s5分类得到的结果计算得到当前取样区域的焊接缺陷评价指标e;
12.s7、根据焊接缺陷评价指标e对当前取样区域的焊接质量进行评级,完成焊接质量
检测。
13.优选的是,所述步骤s4中进行焊接缺陷分类的方法为:
14.s4-1、获取缺陷区域r1的边缘轮廓u1,计算该边缘轮廓u1上任意两个像素点之间的距离,将最大距离对应的两个像素点相连,得到缺陷区域r1的特征线段l
max1
;过特征线段l
max1
的中点的作垂线,取该垂线与边缘轮廓u1相交的两个像素点之间的连线,作为特征垂线d1;
15.s4-2、计算第一形状特征值x1:
[0016][0017]
s4-3、若x1>t1,则将缺陷区域r1判定为裂纹缺陷区域rw;若x1≤t1,则将缺陷区域r1判定为弧坑缺陷区域rh;
[0018]
其中,t1为预先设定的阈值。
[0019]
优选的是,其中,t1≥3.5。
[0020]
优选的是,所述步骤s5中进行焊接缺陷分类的方法为:
[0021]
s5-1、获取缺陷区域r2的边缘轮廓u2,计算该边缘轮廓上任意两个像素点之间的距离,将最大距离对应的两个像素点相连,得到特征线段l
max2

[0022]
过特征线段l
max2
的中点的做垂线,取该垂线与边缘轮廓u2相交的两个像素点之间的连线,作为特征垂线d2;
[0023]
s5-2、以特征线段l
max2
的中点作为分离圆心o1,以o1为圆心、r1为半径作分类圆1,以o1为圆心、r2为半径作分类圆2;其中,0.1d<r1<r2<0.5d,d为特征垂线d2的长度;
[0024]
s5-3、计算该分类圆1内部的像素点的平均灰度值g
in
,计算该分类圆2和边缘轮廓u2之间的像素点的平均灰度值g
out

[0025]
s5-4、计算第二形状特征值x2:
[0026][0027]
当x2>t2,判定缺陷区域r2为焊瘤缺陷区域ru,否则判定缺陷区域r2为弧坑缺陷区域rh;
[0028]
其中,t2为预先设定的阈值,且t2≥1。
[0029]
优选的是,所述步骤s6具体包括:
[0030]
s6-1、统计步骤s4和s5得到的所有裂纹缺陷区域rw、焊瘤缺陷区域ru、弧坑缺陷区域rh,然后通过以下公式计算裂纹缺陷影响指标ηw、弧坑缺陷影响指标ηh、焊瘤缺陷影响指标ηu:
[0031][0032][0033][0034]
其中,f为当前焊接区域灰度图像p内的像素点数量,fw为所有裂纹缺陷区域rw内的
像素点数量,fmaxw为当前焊接区域灰度图像p内面积最大的裂纹缺陷区域rw内的像素点数量;
[0035]fh
为所有弧坑缺陷区域rh内的像素点数量,fmaxh为当前焊接区域灰度图像p内面积最大的弧坑缺陷区域rh内的像素点数量;
[0036]fu
为所有焊瘤缺区域陷ru内的像素点数量,fmaxu为当前焊接区域灰度图像p内面积最大的焊瘤缺区域陷ru内的像素点数量;
[0037]
其中,l为对应的缺陷区域的特征线段l的长度,d
max
为对应的缺陷区域的极长特征垂线d
max
的长度;
[0038]
s6-2、计算焊接缺陷评价指标e:
[0039]
e=a1×
ηw+a2×
ηh+a3×
ηu;
[0040]
其中,a1、a2、a3均为权重系数。
[0041]
优选的是,其中,0.4≤a1≤0.8,0.1≤a2≤0.5,0.1≤a3≤0.5,且a1+a2+a3=1。
[0042]
优选的是,其中,缺陷区域的特征线段l和极长特征垂线d
max
通过以下方法获取:
[0043]
对于任意一个缺陷区域r,获取缺陷区域r的边缘轮廓u,计算该边缘轮廓上任意两个像素点之间的距离,将最大距离对应的两个像素点相连,得到特征线段l;
[0044]
在特征线段l上均匀间隔作n条垂直于特征线段l的直线,取每条直线与边缘轮廓u相交的两个点之间的线段作为候选特征垂线,取长度最长的候选特征垂线作为极长特征垂线d
max

[0045]
其中,n为自然数,缺陷区域r为裂纹缺陷区域rw、弧坑缺陷区域rh、焊瘤缺陷区域ru中的任意一个。
[0046]
优选的是,其中,0.1f
l
<n<0.5f
l
,f
l
表示特征线段l上的像素点数量。
[0047]
优选的是,所述步骤s7具体为:
[0048]
根据焊接缺陷评价指标e对当前当前取样区域的焊接质量进行评级:
[0049]
当e≤e1时,判定当前焊接区域灰度图像p焊接质量为优选等级;
[0050]
当e1<e<e2时,判定当前焊接区域灰度图像p焊接质量为合格等级;
[0051]
当e≥e2时,判定当前焊接区域灰度图像p焊接质量为不合格等级。
[0052]
其中,e1、e2均为预先设置的评价阈值。
[0053]
优选的是,e1=0.1%-1%,e2=0.5%-10%,且满足e1<e2。
[0054]
本发明的有益效果是:
[0055]
本发明提供的基于图像处理的焊接质量检测方法,通过预先采用白色的着色涂料对焊接区域进行喷涂,使裂纹被白色涂料着色,可极大提高裂纹与钢结构基材之间的灰度差,从而能够轻易通过灰度图像实现裂纹的识别;
[0056]
本发明提供的方法中,还能够将被白色涂料着色的裂纹与弧坑缺陷区域进行区分,同时能够实现弧坑缺陷区域rh和焊瘤缺陷区域ru的分类,最终可以根据不同焊接缺陷的数量来对焊接质量实现全面的评价,相比于依靠单一的焊接缺陷进行焊接质量的评价,本发明的方法能够提供更具参考价值的焊接质量检测结果。
附图说明
[0057]
图1为本发明的实施例1的钢结构焊接质量检测方法的流程图;
[0058]
图2为裂纹缺陷、弧坑缺陷、焊瘤缺陷的示意图。
具体实施方式
[0059]
下面结合实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
[0060]
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不排除一个或多个其它元件或其组合的存在或添加。
[0061]
实施例1
[0062]
参照图1,本实施例提供了一种钢结构焊接质量检测方法,包括以下步骤:
[0063]
s1、采用白色的着色涂料对覆盖焊接位置的取样区域进行喷涂,10min后擦拭喷涂区域表面,去除多余的涂料。
[0064]
裂纹是焊接中最为常见的缺陷之一,且对焊接质量有严重影响,其通常是在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏而形成的新界面所产生的缝隙;裂纹通常具有大的长宽比的特征。
[0065]
通常,由于焊接材料的特性,无缺陷的焊接区域比钢结构基材的亮度高,在灰度图像中,焊接材料比钢结构基材的灰度值大(需要理解的是,本发明的方法是以此作为基础的,即本发明仅应用于无缺陷的焊接区域比钢结构基材的亮度高的焊接材料的焊接质量检测中),所以能够实现区分。但裂纹位置由于光线折射等原因,会比正常焊接区域偏黑,其灰度值甚至会接近于钢结构基材,导致常规的图像处理方法不容易识别裂纹。
[0066]
需要说明的是,裂纹、弧坑、焊瘤是常见的焊接缺陷,本发明中主要能够实现此3类缺陷的识别和分类。参照图2,裂纹(图2a)通常是呈线型,是危害最大的缺陷;焊瘤(图2b)通常是熔化金属流淌到焊缝以外未熔化的母材上所形成的局部未熔合凸起,危害包括造成焊缝几何尺寸变化,应力集中等;弧坑(图2c)通常是由于收弧和断弧不当在焊道末端形成的低洼部分,其危害在于减少焊缝的截面积,降低强度。
[0067]
本发明中,喷涂得白色着色涂料能够渗入到裂纹中,且不会被擦掉,能够使裂纹呈现出白色,可极大提高裂纹与钢结构基材之间的灰度差,从而能够轻易通过灰度图像实现裂纹的识别。需要理解的是,其中,着色涂料采用常规产品即可,本发明不做限制;擦拭时,可采用毛刷或布等工具擦拭,并采用能溶解涂料的助剂辅助擦拭,目的是去除表面多余的涂料。而裂纹内的着色涂料能够被保留。
[0068]
s2、采用ccd相机通过俯视视角采集覆盖整个取样区域的原始图像i,然后进行灰度处理,得到原始灰度图像ig。
[0069]
s3、采用第一阈值g
t1
对原始灰度图像ig进行阈值分割,提取像素值大于或等于g
t1
的区域,得到焊接区域灰度图像p。
[0070]
在灰度图像中,焊接区域比钢结构基材的灰度值大,而裂纹已经被白色涂料着色,灰度值显著高于其他区域,所以通过选择合适的灰度阈值g
t1
即可轻易提取出焊接区域以及被白色涂料着色的区域。其中,被白色涂料着色的区域出大部分为裂纹外,当存在弧坑缺陷时,由于弧坑缺陷是向下凹陷,所以弧坑缺陷内部也可能存在近似圆形的白色涂料未被清除,即被白色涂料着色的区域也可能是弧坑缺陷区域rh。所以在以下步骤中,需要进行裂纹缺陷区域rw、弧坑缺陷区域rh两种区域的分类。
[0071]
s4、采用第二阈值g
t2
对焊接区域灰度图像p进行阈值分割,分割像素值大于或等于g
t2
的区域,作为缺陷区域r1,然后对于每个缺陷区域r1进行裂纹缺陷区域rw、弧坑缺陷区域rh的分类。
[0072]
具体如下:
[0073]
s4-1、获取缺陷区域r1的边缘轮廓u1,计算该边缘轮廓u1上任意两个像素点之间的距离,将最大距离对应的两个像素点相连,得到缺陷区域r1的特征线段l
max1
;过特征线段l
max1
的中点的作垂线,取该垂线与边缘轮廓u1相交的两个像素点之间的连线,作为特征垂线d1;
[0074]
s4-2、计算第一形状特征值x1:
[0075][0076]
s4-3、若x1>t1,则将缺陷区域r1判定为裂纹缺陷区域rw;
[0077]
若x1≤t1,则将缺陷区域r1判定为弧坑缺陷区域rh;其中,t1为预先设定的阈值。在优选的实施例中,t1≥3.5。
[0078]
本发明中,特征线段l
max1
可认为是缺陷区域r1的长,特征垂线d1可认为是缺陷区域r1的宽,所示第一形状特征值x1越大说明形状越接近线型,越符合裂纹的特征,所以选择合适的阈值t1即可识别裂纹区域。例如,在一种优选的实施例中,t1=5。
[0079]
除了裂纹区域的其他白色涂料图形则为弧坑缺陷区域rh。
[0080]
s5、提取像素值在g
t1-g
t2
之间的区域,作为缺陷区域r2,然后对于每个缺陷区域区域r2进行弧坑缺陷区域rh和焊瘤缺陷区域ru的分类。
[0081]
具体步骤为:
[0082]
s5-1、获取缺陷区域r2的边缘轮廓u2,计算该边缘轮廓上任意两个像素点之间的距离,将最大距离对应的两个像素点相连,得到特征线段l
max2

[0083]
过特征线段l
max2
的中点的做垂线,取该垂线与边缘轮廓u2相交的两个像素点之间的连线,作为特征垂线d2;
[0084]
s5-2、以特征线段l
max2
的中点作为分离圆心o1,以o1为圆心、r1为半径作分类圆1,以o1为圆心、r2为半径作分类圆2;其中,0.1d<r1<r2<0.5d,d为特征垂线d2的长度;例如,在一种优选的实施例中,r1=0.15d,r2=0.4d;
[0085]
s5-3、计算该分类圆1内部的像素点的平均灰度值g
in
,计算该分类圆2和边缘轮廓u2之间的像素点的平均灰度值g
out

[0086]
s5-4、计算第二形状特征值x2:
[0087][0088]
当x2>t2,判定缺陷区域r2为焊瘤缺陷区域ru,否则判定缺陷区域r2为弧坑缺陷区域rh;
[0089]
其中,t2为预先设定的阈值,且t2≥1。
[0090]
在灰度图中,焊瘤缺陷区域ru与弧坑缺陷区域rh的主要区别表现如下:
[0091]
由于光反射/折射的因素,向上凸起的焊瘤缺陷区域ru灰度值通常会大于正常焊接区域,且由外向内,灰度值会呈现增大的趋势;而弧坑缺陷区域rh则与之相反,弧坑缺陷
区域rh中,由外向内,灰度值会呈现减小的趋势;所以通过该特性,结合上述方法能够实现焊瘤缺陷区域ru和弧坑缺陷区域rh的区分:
[0092]
分类圆1内部的所有像素点的平均灰度值g
in1
与分类圆2和边缘轮廓u1之间的像素点的平均灰度值g
out1
的比值(即x2)即可作为内部与外部的灰度值之比,所以x2越大,则为焊瘤缺陷区域ru的概率越大,x2越小,则为弧坑缺陷区域rh的概率越大,所以通过选择合适的阈值t2能够实现两者的有效区分。例如,在一种优选的实施例中,t2=1.3。
[0093]
s6、根据步骤s4和s5分类得到的结果计算得到当前取样区域的焊接缺陷评价指标e。
[0094]
具体包括:
[0095]
s6-1、统计步骤s4和s5得到的所有裂纹缺陷区域rw、焊瘤缺陷区域ru、弧坑缺陷区域rh,然后通过以下公式计算裂纹缺陷影响指标ηw、弧坑缺陷影响指标ηh、焊瘤缺陷影响指标ηu:
[0096][0097][0098][0099]
其中,f为当前焊接区域灰度图像p内的像素点数量,fw为所有裂纹缺陷区域rw内的像素点数量,fmaxw为当前焊接区域灰度图像p内面积最大的裂纹缺陷区域rw内的像素点数量;
[0100]fh
为所有弧坑缺陷区域rh内的像素点数量,fmaxh为当前焊接区域灰度图像p内面积最大的弧坑缺陷区域rh内的像素点数量;
[0101]fu
为所有焊瘤缺区域陷ru内的像素点数量,fmaxu为当前焊接区域灰度图像p内面积最大的焊瘤缺区域陷ru内的像素点数量;
[0102]
其中,l为对应的缺陷区域的特征线段l的长度,d
max
为对应的缺陷区域的极长特征垂线d
max
的长度,通过以下方法获取:
[0103]
对于任意一个缺陷区域r,获取缺陷区域r的边缘轮廓u,计算该边缘轮廓上任意两个像素点之间的距离,将最大距离对应的两个像素点相连,得到特征线段l;
[0104]
在特征线段l上均匀间隔作n条垂直于特征线段l的直线,取每条直线与边缘轮廓u相交的两个点之间的线段作为候选特征垂线,取长度最长的候选特征垂线作为极长特征垂线d
max

[0105]
其中,n为自然数,缺陷区域r为裂纹缺陷区域rw、弧坑缺陷区域rh、焊瘤缺陷区域ru中的任意一个。在优选的实施例中,0.1f
l
<n<0.5f
l
,f
l
表示特征线段l上的像素点数量。n可以根据实际情况进行选择,例如,在一种进一步优选的实施例中,n=0.2f
l

[0106]
对于以上缺陷影响指标,以焊瘤缺区域陷ru为例,fu/f的值越大,说明焊瘤缺陷越多;fmaxu/f的值越大,说明面积最大的焊瘤缺区域陷ru的面积值越大,缺陷越严重;的值越大,说明缺陷越细长,越接近裂纹,所以认为其危害越大。所以本发明的缺陷影响指标能够综合缺区域陷的多种特征,能够较好的体现缺陷区域的危害,故缺陷影响指标越大,说
明缺陷越严重,焊接质量越低。
[0107]
s6-2、计算焊接缺陷评价指标e:
[0108]
e=a1×
ηw+a2×
ηh+a3×
ηu;
[0109]
其中,a1、a2、a3均为权重系数,能够体现不同的焊接缺陷所带来的不同危害程度。在优选的实施例中,0.4≤a1≤0.8,0.1≤a2≤0.5,0.1≤a3≤0.5,且a1+a2+a3=1。进一步优选的实施例中,a1=0.6,a2=0.25,a1=0.15。
[0110]
s7、根据焊接缺陷评价指标e对当前取样区域的焊接质量进行评级,完成焊接质量检测。
[0111]
具体为:
[0112]
根据焊接缺陷评价指标e对当前当前取样区域的焊接质量进行评级:
[0113]
当e≤e1时,判定当前焊接区域灰度图像p焊接质量为优选等级;
[0114]
当e1<e<e2时,判定当前焊接区域灰度图像p焊接质量为合格等级;
[0115]
当e≥e2时,判定当前焊接区域灰度图像p焊接质量为不合格等级。
[0116]
其中,e1、e2均为预先设置的评价阈值。在优选的实施例中,e1=0.1%-1%,e2=0.5%-10%,且满足e1<e2。e1、e2可根据实际情况进行选择,例如,在一种实施例中,e1=0.5%,e2=3%。
[0117]
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节。

技术特征:
1.一种钢结构焊接质量检测方法,其特征在于,包括以下步骤:s1、采用白色的着色涂料对覆盖焊接位置的取样区域进行喷涂,2-30min后擦拭喷涂区域表面,去除多余的涂料;s2、采用ccd相机通过俯视视角采集覆盖整个取样区域的原始图像i,然后进行灰度处理,得到原始灰度图像i
g
;s3、采用第一阈值g
t1
对原始灰度图像i
g
进行阈值分割,提取像素值大于或等于g
t1
的区域,得到焊接区域灰度图像p;s4、采用第二阈值g
t2
对焊接区域灰度图像p进行阈值分割,分割像素值大于或等于g
t2
的区域,作为缺陷区域r1,然后对于每个缺陷区域r1进行裂纹缺陷区域r
w
、弧坑缺陷区域r
h
的分类;s5、提取像素值在g
t1-g
t2
之间的区域,作为缺陷区域r2,然后对于每个缺陷区域区域r2进行弧坑缺陷区域r
h
和焊瘤缺陷区域r
u
的分类;s6、根据步骤s4和s5分类得到的结果计算得到当前取样区域的焊接缺陷评价指标e;s7、根据焊接缺陷评价指标e对当前取样区域的焊接质量进行评级,完成焊接质量检测。2.根据权利要求1所述的钢结构焊接质量检测方法,其特征在于,所述步骤s4中进行焊接缺陷分类的方法为:s4-1、获取缺陷区域r1的边缘轮廓u1,计算该边缘轮廓u1上任意两个像素点之间的距离,将最大距离对应的两个像素点相连,得到缺陷区域r1的特征线段l
max1
;过特征线段l
max1
的中点的作垂线,取该垂线与边缘轮廓u1相交的两个像素点之间的连线,作为特征垂线d1;s4-2、计算第一形状特征值x1:s4-3、若x1>t1,则将缺陷区域r1判定为裂纹缺陷区域r
w
;若x1≤t1,则将缺陷区域r1判定为弧坑缺陷区域r
h
;其中,t1为预先设定的阈值。3.根据权利要求2所述的钢结构焊接质量检测方法,其特征在于,其中,t1≥3.5。4.根据权利要求2所述的钢结构焊接质量检测方法,其特征在于,所述步骤s5中进行焊接缺陷分类的方法为:s5-1、获取缺陷区域r2的边缘轮廓u2,计算该边缘轮廓上任意两个像素点之间的距离,将最大距离对应的两个像素点相连,得到特征线段l
max2
;过特征线段l
max2
的中点的做垂线,取该垂线与边缘轮廓u2相交的两个像素点之间的连线,作为特征垂线d2;s5-2、以特征线段l
max2
的中点作为分离圆心o1,以o1为圆心、r1为半径作分类圆1,以o1为圆心、r2为半径作分类圆2;其中,0.1d<r1<r2<0.5d,d为特征垂线d2的长度;s5-3、计算该分类圆1内部的像素点的平均灰度值g
in
,计算该分类圆2和边缘轮廓u2之间的像素点的平均灰度值g
out
;s5-4、计算第二形状特征值x2:
当x2>t2,判定缺陷区域r2为焊瘤缺陷区域r
u
,否则判定缺陷区域r2为弧坑缺陷区域r
h
;其中,t2为预先设定的阈值,且t2≥1。5.根据权利要求4所述的钢结构焊接质量检测方法,其特征在于,所述步骤s6具体包括:s6-1、统计步骤s4和s5得到的所有裂纹缺陷区域r
w
、焊瘤缺陷区域r
u
、弧坑缺陷区域r
h
,然后通过以下公式计算裂纹缺陷影响指标η
w
、弧坑缺陷影响指标η
h
、焊瘤缺陷影响指标η
u
:::其中,f为当前焊接区域灰度图像p内的像素点数量,f
w
为所有裂纹缺陷区域r
w
内的像素点数量,fmax
w
为当前焊接区域灰度图像p内面积最大的裂纹缺陷区域r
w
内的像素点数量;f
h
为所有弧坑缺陷区域r
h
内的像素点数量,fmax
h
为当前焊接区域灰度图像p内面积最大的弧坑缺陷区域r
h
内的像素点数量;f
u
为所有焊瘤缺区域陷r
u
内的像素点数量,fmax
u
为当前焊接区域灰度图像p内面积最大的焊瘤缺区域陷r
u
内的像素点数量;其中,l为对应的缺陷区域的特征线段l的长度,d
max
为对应的缺陷区域的极长特征垂线d
max
的长度;s6-2、计算焊接缺陷评价指标e:e=a1×
η
w
+a2×
η
h
+a3×
η
u
;其中,a1、a2、a3均为权重系数。6.根据权利要求1所述的钢结构焊接质量检测方法,其特征在于,其中,0.4≤a1≤0.8,0.1≤a2≤0.5,0.1≤a3≤0.5,且a1+a2+a3=1。7.根据权利要求5所述的钢结构焊接质量检测方法,其特征在于,其中,缺陷区域的特征线段l和极长特征垂线d
max
通过以下方法获取:对于任意一个缺陷区域r,获取缺陷区域r的边缘轮廓u,计算该边缘轮廓上任意两个像素点之间的距离,将最大距离对应的两个像素点相连,得到特征线段l;在特征线段l上均匀间隔作n条垂直于特征线段l的直线,取每条直线与边缘轮廓u相交的两个点之间的线段作为候选特征垂线,取长度最长的候选特征垂线作为极长特征垂线d
max
;其中,n为自然数,缺陷区域r为裂纹缺陷区域r
w
、弧坑缺陷区域r
h
、焊瘤缺陷区域r
u
中的任意一个。8.根据权利要求7所述的钢结构焊接质量检测方法,其特征在于,其中,0.1f
l
<n<0.5f
l
,f
l
表示特征线段l上的像素点数量。9.根据权利要求7所述的钢结构焊接质量检测方法,其特征在于,所述步骤s7具体为:
根据焊接缺陷评价指标e对当前当前取样区域的焊接质量进行评级:当e≤e1时,判定当前焊接区域灰度图像p焊接质量为优选等级;当e1<e<e2时,判定当前焊接区域灰度图像p焊接质量为合格等级;当e≥e2时,判定当前焊接区域灰度图像p焊接质量为不合格等级;其中,e1、e2均为预先设置的评价阈值。10.根据权利要求9所述的钢结构焊接质量检测方法,其特征在于,e1=0.1%-1%,e2=0.5%-10%,且满足e1<e2。

技术总结
本发明公开了一种钢结构焊接质量检测方法,包括以下步骤:S1、采用白色的着色涂料对覆盖焊接位置的取样区域进行喷涂,只有去除多余的涂料;S2、采集覆盖整个取样区域的原始图像I,然后进行灰度处理,得到原始灰度图像I


技术研发人员:孙金亮 赵亮 孙洪伟 袁建龙
受保护的技术使用者:江苏迅兴重工设备有限公司
技术研发日:2023.06.05
技术公布日:2023/9/23
版权声明

本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)

航空之家 https://www.aerohome.com.cn/

飞机超市 https://mall.aerohome.com.cn/

航空资讯 https://news.aerohome.com.cn/

分享:

扫一扫在手机阅读、分享本文

相关推荐