多源数据融合的高速公路收费站出口流量预测方法及系统
未命名
07-12
阅读:141
评论:0

1.本发明涉及智能交通领域,具体涉及多源数据融合的高速公路收费站出口流量预测方法,还涉及多源数据融合的高速公路收费站出口流量预测系统。
背景技术:
2.高速公路密切了城市之间的联系,给出行者带来更加便捷的出行条件,人民对高速公路服务、交通诱导服务的需求不断增加,交通管理部门对交通管控、交通状况的缓解提出更高的要求。交通流预测是分析道路上交通状况、挖掘交通模式以及预测道路交通趋势的过程。
3.收费站是高速公路交通网络中的瓶颈节点,容易引发交通排队问题。及时的流量预测可以帮助交通管理部门先行做出决策,交通管理部门可根据预测结果预先实施抢占性对策,例如增派收费员等来应对高峰时刻,最大化改善交通状况和减少交通延误。通过采集到的数据对流量做出预测,可有效缓减收费站出口拥堵问题,为出行者提供便捷高效的出行服务,树立良好的高速公路形象。
4.现有的高速公路收费站出口流量预测大多基于单一的数据源进行预测,单一的数据可能会有检测范围小,数据特征少的局限性。在高速公路大数据中,多源数据具有数据种类齐全,数据量大的特点,利用多源数据间的互补性和冗余性,通过多源数据融合能够有效提高交通预测的准确率。
技术实现要素:
5.本发明目的:在于提供多源数据融合的高速公路收费站出口流量预测方法及系统,通过融合收费数据和车辆牌照识别数据建立预测模型,对高速公路收费站出口流量进行预测,从而提高交通流预测精度,缓解交通拥堵。
6.为实现以上功能,本发明设计多源数据融合的高速公路收费站出口流量预测方法,包括以下步骤s1-步骤s5:
7.步骤s1:获取高速公路收费数据和车辆牌照识别数据,其中高速公路收费数据包括高速公路上的各出口收费站数据以及各入口收费站数据;
8.步骤s2:分别针对高速公路收费数据和车辆牌照识别数据,提取单源数据流量特征;
9.步骤s3:根据待预测出口收费站的时空特性,统一各单源数据流量特征的时空维度,获得时空一致化的入口收费站的数据、时空一致化的车辆牌照识别数据;
10.步骤s4:分别构建基于收费数据的预测模型和基于车辆牌照识别数据的预测模型,其中基于收费数据的预测模型以步骤s3所获得的时空一致化的入口收费站的数据为输入,以预测的出口收费站流量为输出,基于车辆牌照识别数据的预测模型以步骤s3所获得的时空一致化的车辆牌照识别数据为输入,以预测的出口收费站流量为输出;
11.步骤s5:针对基于收费数据的预测模型和基于车辆牌照识别数据的预测模型所输
出的预测的出口收费站流量,基于神经网络进行融合,获得融合后的出口收费站流量多源预测结果。
12.作为本发明的一种优选技术方案:步骤s2中提取单源数据流量特征方法为:将步骤s1所获取的数据按照5min的时间维度进行聚合,共有s条数据,预测时间序列为待预测出口收费站流量序列为
13.作为本发明的一种优选技术方案:步骤s3中车辆牌照识别数据的时空一致化方法如下:
14.按照时间、空间特性匹配的原则对车辆牌照识别数据进行筛选,以同路段为约束将其转换为同时段、同间隔的车辆牌照识别数据;
15.入口收费站的数据的时空一致化方法如下:
16.选取某一个出口收费站作为目标站点d,根据车辆进入的入口收费站和驶出的出口收费站,提取所有以目标站点为出口收费站的入口收费站序列{o1,o2,
…
,on};
17.计算od对内车辆旅行时间,其计算公式为:车辆旅行时间=出口时间-入口时间;
18.计算od对内车辆旅行时间均值,其计算公式为:
[0019][0020]
式中,为入口收费站oj在时间段k内所有车辆的平均旅行时间,为ojd路段上在时间段k内第m辆车的车辆旅行时间,m为车辆总数;
[0021]
选取样本均值两倍标准差作为阈值范围,剔除在范围之外的数据,其中:
[0022][0023]
计算样本均值得到od对内车辆时间顺差
[0024]
构造目标站点和各入口收费站之间的关联矩阵,对于一个特定的目标站点,在时间序列为入口收费站为{o1,o2,
…
,on}时,关联矩阵为:
[0025][0026]
表示入口收费站为oj,目标站点为d,时间点为时的流量;
[0027]
选取目标站点d待预测时间序列中的某一个时间点其波动范围为其波动范围为和表示该时间点的起始时间和终止时间;
[0028]
在考虑时间顺差的情况下对应的入口收费站时间波动范围为dj
为od对内车辆时间顺差;计算目标站点d和关联站点之间的关联系数如下式:
[0029][0030]
式中,为各入口收费站流量的均值,为时间点为时目标站点d的流量,为目标站点d各时间点的流量均值;设定关联阈值0.8,筛选出关联系数大于关联阈值的入口收费站,完成对入口收费站数据的时空一致化处理。
[0031]
作为本发明的一种优选技术方案:步骤s4所述的基于收费数据的预测模型采用gcn模型,gcn模型表示为:
[0032][0033]
x为特征矩阵,e为单位矩阵,d为度矩阵,a为邻接矩阵,w表示权重,b表示训练过程中的偏差,relu()为激活函数,f(x,a)表示图的卷积过程;
[0034]
tgcn模型中各参数计算过程如下,f(a,x
t
)表示图卷积过程,h
t-1
为t-1时刻的输出:
[0035]ut
=σ(wu[f(a,x
t
),h
t-1
]+bu)
[0036]rt
=σ(wr[f(a,x
t
),h
t-1
]+br)
[0037]ct
=tanh(wc[f(a,x
t
),(r
t
*h
t-1
)]+bc)
[0038]ht
=u
t
*h
t-1
+(1-u
t
)*c
t
[0039]
基于收费数据的预测模型的输出为预测的出口收费站流量,输出形式为按照5min的时间维度进行聚合的流量序列;
[0040]
基于车辆牌照识别数据的预测模型采用lstm模型,通过随机搜索算法得到lstm模型的最优超参数,所述模型的最优超参数包括隐藏层大小和学习率,隐藏层大小搜索范围为[32,512],学习率的搜索范围为[0.0001,0.5],所述模型的输出为预测的出口收费站流量,形式为按照5min的时间维度的出口收费站流量序列。
[0041]
作为本发明的一种优选技术方案:步骤s5中采用bp神经网络,针对基于收费数据的预测模型和基于车辆牌照识别数据的预测模型所输出的预测的出口收费站流量进行融合,bp神经网络结构如下:
[0042]
j=m+n+a
[0043]
式中:j,m,n分别为隐藏层、输入层、输出层神经元个数,a为常数。
[0044]
本发明还设计多源数据融合的高速公路收费站出口流量预测系统,包含多源检测器模块、特征提取模块、时空一致化模块、单源数据预测模块、多源数据融合预测模块,以实现所述的多源数据融合的高速公路收费站出口流量预测方法:
[0045]
多源检测器模块获取高速公路收费数据和车辆牌照识别数据;特征提取模块提取各单源数据流量特征;时空一致化模块统一各单源时空维度;单源数据预测模块构建基于收费数据的预测模型和基于车辆牌照识别数据的预测模型;将两个单源预测模型的输出作
为多源数据融合预测模块的输入,基于多源数据融合预测模块获取预测的出口收费站流量。
[0046]
有益效果:相对于现有技术,本发明的优点包括:
[0047]
与基于单一数据源的高速公路收费站出口流量预测方法相比,本发明提供的方法利用多源数据间的互补性和冗余性,弥补了基于单一数据源存在的检测范围小,数据特征少的局限性。在高速公路大数据中,多源数据具有数据种类齐全,数据量大的特点,通过多源数据融合能够有效提高交通预测的准确率。
附图说明
[0048]
图1是根据本发明实施例提供的多源数据融合的高速公路收费站出口流量预测方法框架图;
[0049]
图2是根据本发明实施例提供的关联进口筛选步骤图;
[0050]
图3是根据本发明实施例提供的旅行时间处理流程图;
[0051]
图4是根据本发明实施例提供的多源数据融合的高速公路收费站出口流量预测系统示意图。
具体实施方式
[0052]
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
[0053]
参照图1,本发明实施例提供的多源数据融合的高速公路收费站出口流量预测方法,包括以下步骤s1-步骤s5:
[0054]
步骤s1:获取高速公路收费数据和车辆牌照识别数据,其中高速公路收费数据包括高速公路上的各出口收费站数据以及各入口收费站数据;
[0055]
入口收费站数据表示车辆进入收费站入口时产生的交易记录信息,需要包含的字段有:入口站编号、入口车道编号、车辆速度、入口日期及时间、流水号。
[0056]
出口收费站数据表示通过收费站出口时产生的交易记录信息,需要包含的字段有:入口站hex编码、入口车道编号、入口日期及时间、出口站编号、出口车道编号、出口时间、流水号。
[0057]
车辆牌照识别数据表示车辆行驶通过门架时,高清车牌识别设备进行实时车牌抓拍生成车牌识别的数据,需要包含的字段有:车牌识别流水号、识别车牌、车辆速度、识别车型、车道编号、数据生成时间、桩号。
[0058]
基于收费数据提取车辆od,每个od为一个二维向量,其第一个分量为收费站入口o,采用入口站编号表示;第二个分量为收费站出口d,采用出口站编号表示。
[0059]
步骤s2:分别针对高速公路收费数据和车辆牌照识别数据,提取单源数据流量特征;
[0060]
步骤s2中提取单源数据流量特征方法为:将步骤s1所获取的数据按照5min的时间维度进行聚合,共有s条数据,预测时间序列为待预测出口收费站流量序列为
[0061]
步骤s3:根据待预测出口收费站的时空特性,统一各单源数据流量特征的时空维度,获得时空一致化的入口收费站的数据、时空一致化的车辆牌照识别数据;
[0062]
步骤s3中车辆牌照识别数据的时空一致化方法如下:
[0063]
按照时间、空间特性匹配的原则对车辆牌照识别数据进行筛选,以同路段为约束将其转换为同时段、同间隔的车辆牌照识别数据;
[0064]
参照图2,入口收费站的数据的时空一致化方法如下:
[0065]
选取某一个出口收费站作为目标站点d,根据车辆进入的入口收费站和驶出的出口收费站,提取所有以目标站点为出口收费站的入口收费站序列{o1,o2,
…
,on};
[0066]
计算od对内车辆旅行时间,其计算公式为:车辆旅行时间=出口时间-入口时间;
[0067]
计算od对内车辆旅行时间均值,其计算公式为:
[0068][0069]
式中,为入口收费站oj在时间段k内所有车辆的平均旅行时间,为ojd路段上在时间段k内第m辆车的车辆旅行时间,m为车辆总数;
[0070]
参照图3,选取样本均值两倍标准差作为阈值范围,剔除在范围之外的数据,其中:
[0071][0072]
计算样本均值得到od对内车辆时间顺差
[0073]
构造目标站点和各入口收费站之间的关联矩阵,对于一个特定的目标站点,在时间序列为入口收费站为{o1,o2,
…
,on}时,关联矩阵为:
[0074][0075]
表示入口收费站为oj,目标站点为d,时间点为时的流量;
[0076]
选取目标站点d待预测时间序列中的某一个时间点其波动范围为其波动范围为和表示该时间点的起始时间和终止时间;
[0077]
由于目标站点和对应的进口收费站之间空间上存在着一定的距离,车辆进入某一入口收费站后,需要经过一段时间才能从目标站点驶出,存在着一定的时间顺差,因此,在考虑时间顺差的情况下对应的入口收费站时间波动范围为dj为od对内车辆时间顺差;计算目标站点d和关联站点之间的关联系数如下式:
[0078][0079]
式中,为各入口收费站流量的均值,为时间点为时目标站点d的流量,为目标站点d各时间点的流量均值;设定关联阈值0.8,筛选出关联系数大于关联阈值的入口收费站,完成对入口收费站数据的时空一致化处理。
[0080]
步骤s4:分别构建基于收费数据的预测模型和基于车辆牌照识别数据的预测模型,其中基于收费数据的预测模型以步骤s3所获得的时空一致化的入口收费站的数据为输入,以预测的出口收费站流量为输出,基于车辆牌照识别数据的预测模型以步骤s3所获得的时空一致化的车辆牌照识别数据为输入,以预测的出口收费站流量为输出;
[0081]
利用图卷积网络gcn捕捉高速公路网络的拓扑结构,获得其空间依赖性,利用门控循环单元gru捕获高速公路上交通信息的动态变化,获得时间相关性,构建基于收费数据的时间图卷积网络tgcn预测模型,得到基于收费数据的预测结果。
[0082]
所述模型的输入为经过步骤s3时空一致化处理后的入口收费站数据,输入形式为按照5min的时间维度进行聚合的流量序列。
[0083]
所述时间图卷积网络模型包括gcn层、gru层,以及全连接层。
[0084]
gcn层通过频谱卷积来提取区域块之间的空间特征,gcn层输出具有空间特征的流量矩阵至gru层,gru层输出具有时间特征的流量矩阵,将得到的具有时间和空间特征的流量矩阵通过全连接层输出高速公路收费站出口流量预测结果。
[0085]
步骤s4所述的基于收费数据的预测模型gcn模型表示为:
[0086][0087]
x为特征矩阵,e为单位矩阵,d为度矩阵,a为邻接矩阵,w表示权重,b表示训练过程中的偏差,relu()为激活函数,f(x,a)表示图的卷积过程;
[0088]
tgcn模型中各参数计算过程如下,f(a,x
t
)表示图卷积过程,h
t-1
为t-1时刻的输出:
[0089]ut
=σ(wu[f(a,x
t
),h
t-1
]+bu)
[0090]rt
=σ(wr[f(a,x
t
),h
t-1
]+br)
[0091]ct
=tanh(wc[f(a,x
t
),(r
t
*h
t-1
)]+bc)
[0092]ht
=u
t
*h
t-1
+(1-u
t
)*c
t
[0093]
基于收费数据的预测模型的输出为预测的出口收费站流量,输出形式为按照5min的时间维度进行聚合的流量序列;
[0094]
所述模型的评价指标为rmse、mae、mape。
[0095]
构建基于车辆牌照识别数据的lstm预测模型,通过随机搜索算法得到lstm模型的最优超参数,通过所述最优超参数训练lstm模型,得到基于车辆牌照识别数据的预测结果。
[0096]
所述模型的输入为经过步骤s3时空一致化处理后的车辆牌照识别数据。
[0097]
所述模型的输入形式为按照5min的时间维度进行聚合的车辆牌照识别数据流量
序列。所述模型的最优超参数包括隐藏层大小和学习率,隐藏层大小搜索范围为[32,512],学习率的搜索范围为[0.0001,0.5],所述模型的输出为预测的出口收费站流量,形式为按照5min的时间维度的出口收费站流量序列。
[0098]
所述模型的输出为预测的收费站出口流量。所述模型的输出形式为5min一条的高速公路收费站出口流量序列。所述模型的评价指标为rmse、mae、mape。
[0099]
步骤s5:针对基于收费数据的预测模型和基于车辆牌照识别数据的预测模型所输出的预测的出口收费站流量,基于神经网络进行融合,获得融合后的出口收费站流量多源预测结果。
[0100]
步骤s5中采用bp神经网络,针对基于收费数据的预测模型和基于车辆牌照识别数据的预测模型所输出的预测的出口收费站流量进行融合,bp神经网络具有输入层、隐藏层、输出层三层结构,输入层的神经元为经过步骤s4得到的两个在同一时空条件下的高速公路收费站出口预测结果,所述输入层输入数据的形式为5min一条的高速公路收费站出口流量序列。
[0101]
根据下式确定初步确定隐藏层节点数,然后逐步增加隐藏层节点数量,重新训练网络:
[0102]
j=m+n+a
[0103]
式中:j,m,n分别为隐藏层、输入层、输出层神经元个数,a为常数。
[0104]
所述输出层的神经元为经过bp神经网络融合预测后的高速公路出口收费站预测结果,输出层输出数据的形式为5min一条的高速公路收费站出口流量序列。
[0105]
本发明实施例还提供多源数据融合的高速公路收费站出口流量预测系统,参照图4,包含多源检测器模块、特征提取模块、时空一致化模块、单源数据预测模块、多源数据融合预测模块,以实现所述的多源数据融合的高速公路收费站出口流量预测方法:
[0106]
多源检测器模块获取高速公路收费数据和车辆牌照识别数据;特征提取模块提取各单源数据流量特征;时空一致化模块统一各单源时空维度;单源数据预测模块构建基于收费数据的预测模型和基于车辆牌照识别数据的预测模型;将两个单源预测模型的输出作为多源数据融合预测模块的输入,基于多源数据融合预测模块获取预测的出口收费站流量。
[0107]
本发明实施例中收费数据和车辆牌照识别数据均是基于现有的高速公路检测系统,因此在利用本发明实施例提供的方法和系统对高速公路收费站出口流量预测的过程中无需额外建立采集系统。所以本发明实施例提供的方法对于类似的数据源具有较好的移植性。
[0108]
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。
技术特征:
1.多源数据融合的高速公路收费站出口流量预测方法,其特征在于,包括以下步骤s1-步骤s5:步骤s1:获取高速公路收费数据和车辆牌照识别数据,其中高速公路收费数据包括高速公路上的各出口收费站数据以及各入口收费站数据;步骤s2:分别针对高速公路收费数据和车辆牌照识别数据,提取单源数据流量特征;步骤s3:根据待预测出口收费站的时空特性,统一各单源数据流量特征的时空维度,获得时空一致化的入口收费站的数据、时空一致化的车辆牌照识别数据;步骤s4:分别构建基于收费数据的预测模型和基于车辆牌照识别数据的预测模型,其中基于收费数据的预测模型以步骤s3所获得的时空一致化的入口收费站的数据为输入,以预测的出口收费站流量为输出,基于车辆牌照识别数据的预测模型以步骤s3所获得的时空一致化的车辆牌照识别数据为输入,以预测的出口收费站流量为输出;步骤s5:针对基于收费数据的预测模型和基于车辆牌照识别数据的预测模型所输出的预测的出口收费站流量,基于神经网络进行融合,获得融合后的出口收费站流量多源预测结果。2.根据权利要求1所述的多源数据融合的高速公路收费站出口流量预测方法,其特征在于,步骤s2中提取单源数据流量特征方法为:将步骤s1所获取的数据按照5min的时间维度进行聚合,共有s条数据,预测时间序列为待预测出口收费站流量序列为3.根据权利要求1所述的多源数据融合的高速公路收费站出口流量预测方法,其特征在于,步骤s3中车辆牌照识别数据的时空一致化方法如下:按照时间、空间特性匹配的原则对车辆牌照识别数据进行筛选,以同路段为约束将其转换为同时段、同间隔的车辆牌照识别数据;入口收费站的数据的时空一致化方法如下:选取某一个出口收费站作为目标站点d,根据车辆进入的入口收费站和驶出的出口收费站,提取所有以目标站点为出口收费站的入口收费站序列{o1,o2,
…
,o
n
};计算od对内车辆旅行时间,其计算公式为:车辆旅行时间=出口时间-入口时间;计算od对内车辆旅行时间均值,其计算公式为:式中,为入口收费站o
j
在时间段k内所有车辆的平均旅行时间,为o
j
d路段上在时间段k内第m辆车的车辆旅行时间,m为车辆总数;选取样本均值两倍标准差作为阈值范围,剔除在范围之外的数据,其中:
计算样本均值得到od对内车辆时间顺差构造目标站点和各入口收费站之间的关联矩阵,对于一个特定的目标站点,在时间序列为入口收费站为{o1,o2,
…
,o
n
}时,关联矩阵为:}时,关联矩阵为:表示入口收费站为o
j
,目标站点为d,时间点为时的流量;选取目标站点d待预测时间序列中的某一个时间点其波动范围为其波动范围为和表示该时间点的起始时间和终止时间;在考虑时间顺差的情况下对应的入口收费站时间波动范围为d
j
为od对内车辆时间顺差;计算目标站点d和关联站点之间的关联系数如下式:式中,为各入口收费站流量的均值,为时间点为时目标站点d的流量,为目标站点d各时间点的流量均值;设定关联阈值0.8,筛选出关联系数大于关联阈值的入口收费站,完成对入口收费站数据的时空一致化处理。4.根据权利要求1所述的多源数据融合的高速公路收费站出口流量预测方法,其特征在于,步骤s4所述的基于收费数据的预测模型采用gcn模型,gcn模型表示为:x为特征矩阵,e为单位矩阵,d为度矩阵,a为邻接矩阵,w表示权重,b表示训练过程中的偏差,relu()为激活函数,f(x,a)表示图的卷积过程;tgcn模型中各参数计算过程如下,f(a,x
t
)表示图卷积过程,h
t-1
为t-1时刻的输出:u
t
=σ(w
u
[f(a,x
t
),h
t-1
]+b
u
)r
t
=σ(w
r
[f(a,x
t
),h
t-1
]+b
r
)c
t
=tanh(w
c
[f(a,x
t
),(r
t
*h
t-1
)]+b
c
)h
t
=u
t
*h
t-1
+(1-u
t
)*c
t
基于收费数据的预测模型的输出为预测的出口收费站流量,输出形式为按照5min的时间维度进行聚合的流量序列;基于车辆牌照识别数据的预测模型采用lstm模型,通过随机搜索算法得到lstm模型的最优超参数,所述模型的最优超参数包括隐藏层大小和学习率,隐藏层大小搜索范围为[32,512],学习率的搜索范围为[0.0001,0.5],所述模型的输出为预测的出口收费站流量,
形式为按照5min的时间维度的出口收费站流量序列。5.根据权利要求1所述的多源数据融合的高速公路收费站出口流量预测方法,其特征在于,步骤s5中采用bp神经网络,针对基于收费数据的预测模型和基于车辆牌照识别数据的预测模型所输出的预测的出口收费站流量进行融合,bp神经网络结构如下:j=m+n+a式中:j,m,n分别为隐藏层、输入层、输出层神经元个数,a为常数。6.多源数据融合的高速公路收费站出口流量预测系统,其特征在于,包含多源检测器模块、特征提取模块、时空一致化模块、单源数据预测模块、多源数据融合预测模块,以实现如权利要求1-5任一项所述的多源数据融合的高速公路收费站出口流量预测方法:多源检测器模块获取高速公路收费数据和车辆牌照识别数据;特征提取模块提取各单源数据流量特征;时空一致化模块统一各单源时空维度;单源数据预测模块构建基于收费数据的预测模型和基于车辆牌照识别数据的预测模型;将两个单源预测模型的输出作为多源数据融合预测模块的输入,基于多源数据融合预测模块获取预测的出口收费站流量。
技术总结
本发明公开了多源数据融合的高速公路收费站出口流量预测方法及系统,获取高速公路收费数据和车辆牌照识别数据,提取各单源数据流量特征,根据待预测收费站出口的时空特性统一各单源时空维度,构建基于收费数据的预测模型和基于车辆牌照识别数据的预测模型,将两个单源预测模型的输出作为多源数据融合预测模型的输入,基于多源数据融合预测模型获取预测流量。本发明结合收费数据和车辆牌照识别数据进行多方位检测,利用多源数据间的互补性和冗余性,避免了基于单一数据源可能存在的检测范围小、数据特征少的局限性,提高了交通预测的准确率。确率。确率。
技术研发人员:张健 周开城 钱品政 张海燕 刘子懿 熊壮 梁涵月
受保护的技术使用者:东南大学
技术研发日:2023.03.27
技术公布日:2023/7/7
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/