一种提高MI-SiC-SiC预制体熔融渗硅均匀性的方法与流程
未命名
07-23
阅读:121
评论:0

一种提高mi-sic-sic预制体熔融渗硅均匀性的方法
技术领域
1.本发明属于陶瓷基复合材料制备技术领域,尤其涉及一种提高mi-sic-sic预制体熔融渗硅均匀性的方法。
背景技术:
2.连续纤维增强陶瓷基复合材料具有耐高温、高比强度、高比模量的突出优点,且具有类似金属的断裂特征,可靠性高,因此成为新型航空航天热结构件及核工业抗辐射构件的急需材料。
3.连续纤维增强陶瓷基复合材料包括纤维、基体和界面层三个关键组元。纤维是复合材料的骨架,是承载主体;基体对纤维提供保护,并将纤维结合在一起成为一个整体;界面层位于纤维和基体之间,主要承担传递载荷、阻碍裂纹扩展、保护纤维、界面热传导等多方面的功能,对复合材料的强度、断裂韧性、抗氧化性以及热导率等性能起到十分重要的影响。
4.目前连续碳化硅纤维增强碳化硅陶瓷基复合材料(sic/sic)是耐高温性能最优异的结构材料之一。该材料的制备方法主要有以下几种:化学气相渗透法(chemicalvaporinfiltration,cvi)、熔融浸渗法(meltinfiltration,mi)、纳米渗透瞬态共晶法(nano-infiltrationandtransienteutectic,nite)、溶胶-凝胶法(sol-gel)、先驱体浸渍裂解法(precursorimpregnationandpyrolysis,pip)、cvi+pip及nite+pip等组合制备工艺。
5.在这些技术中,mi工艺制备的sic/sic复合材料(mi-sic/sic)具有孔隙率低、导热率高、层间剪切强度高等性能优势,且该工艺还有制备周期短、成本低的突出优点,因此已在国外应用于制造航空发动机和工业燃气轮机热端构件。
6.美国通用电气(ge)公司开发了单向预浸带-熔渗(prepreg-mi)工艺,并发展了以为牌号的mi-sic/sic复合材料产品,已经成功应用于航空发动机及工业燃气轮机的涡轮外环、燃烧室等热结构件(董绍明,胡建宝,张翔宇,sic/sic复合材料mi工艺制备技术,航空制造技术,2014,6)。单向预浸带-mi工艺主要包括以下步骤:(1)首先采用化学气相沉积(cvd)技术在sic纤维表面制备界面层;(2)将sic粉体、碳粉体与树脂粘结剂、表面活性剂与溶剂混合,制备成陶瓷浆料,使浆料浸入带涂层的纤维束,湿法卷绕形成sic纤维单向预浸带;(3)单向预浸带层叠后形成复合材料预制体,然后经过固化实现定型;(4)热解将树脂碳化,其它有机组分以气态排出,形成带有大量微孔的预制体,为后续渗硅提供通道;(5)最后将硅粉或硅块升温至熔融状态(>1410℃),液态硅在毛细管力的作用下渗入多孔的纤维预制体,硅和碳反应生成碳化硅,制备出致密的mi-sic/sic复合材料。
7.nasa开发了浆料浇注-熔渗(slurrycast-mi)工艺,并形成了多个牌号系列陶瓷基复合材料产品,如n22、n24等(董绍明,胡建宝,张翔宇,sic/sic复合材料mi工艺制备技术,航空制造技术,2014,6)。浆料浇注-熔渗工艺包括以下几个步骤:(1)首先将sic纤维布层叠成型得到复合材料预制体;(2)采用cvi技术在纤维表面制备界面层;(3)采用cvi技术在界
面层表面沉积sic保护层,以降低后续熔渗过程中熔融硅对sic纤维和纤维表面涂层的腐蚀;(4)将sic粉体、树脂粘结剂、表面活性剂与溶剂混合,制备成陶瓷浆料,使浆料浸入预制体中,然后热解将树脂碳化,其它有机组分以气态排出,形成带有大量微孔的预制体,为后续渗硅提供通道;(5)最后,将硅粉或硅块升温至熔融状态(>1410℃),液态硅在毛细管力的作用下渗入多孔的纤维预制体,硅和碳反应生成碳化硅,制备出致密的mi-sic/sic复合材料。
8.在上述mi过程中,熔融硅在毛细管力作用下进入预制体内部,由于熔融硅对sic纤维和sic纤维表面涂层具有强烈的腐蚀性,需要严格控制渗硅条件以降低液硅对纤维和涂层的腐蚀损伤。因此,对熔融渗硅的温度和时间有严格的限制,一般为温度1410℃~1450℃,时间10min~120min。在此温度下,硅粘度较高、表面张力较大,导致其在预制体中的渗透距离有限(一般为50mm以内)。在mi过程中,液硅与基体内部的碳发生反应,生成sic,反应式如下:
9.si(l)+c(s)=sic(s)
10.生成的sic产物会进一步阻碍液硅的渗透,使渗硅的有效距离进一步下降,严重影响了mi-sic/sic复合材料的均匀性。
11.目前mi-sic/sic复合材料的研究较少涉及如何均匀渗硅的技术问题。专利cn112341213a(王鹏,张少博,张海昇,张晰,姜伟光,李建章,一种小尺寸圆截面陶瓷基复合材料构件熔融渗硅方法.2021.)公开了一种小尺寸圆筒构件渗硅方法,该方法将圆筒构件半成品的内型面用硅粉浆料附着,外型面和渗硅工装之间用硅粉填充,加热后通过双面熔融渗硅,以期解决渗硅过程中均匀性差,存在密度梯度的问题。但该技术仅适用于薄壁构件,当壁厚增加,液硅向内渗透的距离增加,双面渗硅的均匀化效果随之减弱。而对于复杂构件,会出现渗硅后构件内部难以清理,甚至无法双面渗硅等问题。此外,该技术中半成品表面与硅粉直接接触,会造成渗硅后构件表面存在富硅层,严重影响构件性能。因此,如何在短时间内实现各种构型预制体的均匀渗硅,是熔融渗硅技术实现工程化应用的核心问题之一。
技术实现要素:
12.本发明的目的在于提供一种提高mi-sic-sic预制体熔融渗硅均匀性的方法,以解决上述技术问题。
13.本发明为解决上述技术问题,采用以下技术方案来实现:
14.一种提高mi-sic-sic预制体熔融渗硅均匀性的方法,其所使用的工装包括石墨盖板、脱模剂层、石墨底板和若干个石墨螺栓,所述石墨盖板中部均匀开设有若干个灯芯孔,所述石墨盖板与石墨底板四周通过若干个石墨螺栓固定连接,所述石墨盖板的上下表面、石墨底板的上表面以及灯芯孔内均涂覆有脱模剂层;
15.一种提高mi-sic-sic预制体熔融渗硅均匀性的方法,包括如下步骤:
16.1)将连续sic纤维制成单向预浸带或者预浸布中的任意一种,具体如下:
17.在制备单向预浸带时,首先在sic纤维束丝表面制备表面涂层,而后使纤维束丝连续通过陶瓷浆料池,然后湿法缠绕在滚筒上,形成单向预浸带;
18.在制备预浸布时,首先将sic纤维编织获得纤维布,在纤维布表面制备表面涂层,
将带有纤维表面涂层的sic纤维布浸泡于陶瓷浆料中,充分浸渍后取出并干燥,获得预浸布;
19.2)将若干层单向预浸带或者预浸布层叠,其中相邻预浸带或者预浸布的纤维之间以任意角度排列形成预制体;
20.3)将步骤2)所得的预制体利用真空袋进行密封,内部持续抽真空,置于热压罐中固化,获得固化预制体;
21.4)在步骤3)所得的固化预制体中部均匀开设若干个孔,将步骤1)中所得的单向预浸带制成若干个棒材作为灯芯,用步骤1)中的陶瓷浆料涂覆在灯芯表面,然后将灯芯分别插入固化预制体上开设的孔中,所述灯芯上端超出固化预制体的上表面,待灯芯干燥后镶嵌在孔中,获得带灯芯阵列的预制体;
22.5)将步骤4)所得带灯芯阵列的预制体置于真空气氛中进行热处理,使预制体中的有机物碳化得到碳化预制体;
23.6)将步骤5)所得的碳化预制体置于石墨盖板与石墨底板之间,其中超出固化预制体表面的灯芯分别插入对应的灯芯孔中,用石墨螺栓对石墨盖板和石墨底板进行固定,在石墨盖板的上表面铺设一层硅粉,并使硅粉覆盖所有灯芯;
24.7)将步骤6)所得的工装置于渗硅炉中,在真空气氛中进行熔融渗硅,获得mi-sic/sic复合材料。
25.优选的,所述脱模剂层采用氮化硼,所述步骤1)中在sic纤维束丝或者纤维布表面制备的表面涂层包括bn涂层、si3n4涂层和c涂层,所述单片预浸带的厚度在0.2mm-0.6mm之间;所述单片预浸布的厚度在0.3mm-0.8mm之间,所述陶瓷浆料中包含碳化硅粉体、碳粉体、树脂粘合剂、分散剂及溶剂。
26.优选的,所述碳化硅粉体的粒度为0.5μm-5μm,所述碳粉体的粒度为0.1μm-5μm,所述树脂粘合剂为环氧树脂、酚醛树脂或者糠醛树脂中的任意一种。
27.优选的,所述步骤3)中的热压罐固化压力为0.5mpa-2mpa;温度为80℃-150℃,保温时间为0.5h-10h。
28.优选的,所述步骤4)中固化预制体上的开孔直径为0.1mm-5mm,孔间距为10mm-100mm,灯芯上端高出固化预制体表面1mm~10mm。
29.优选的,所述步骤5)中的惰性气氛为氮气或氩气中的任意一种,热处理温度为900℃-1300℃,保温时间为0.5h-5h。
30.优选的,所述步骤7)中的熔融渗硅温度为1410℃-1450℃,渗硅时间为1min-60min。
31.本发明的有益效果是:
32.1、本发明通过在sic纤维预制体上引入灯芯阵列,显著缩短了渗硅的距离,提高了渗硅的速度和渗硅的均匀性,改善mi-sic/sic复合材料的性能;
33.2、本发明渗硅后,灯芯与复合材料融为一体,成为复合材料的一部分。由于灯芯中sic纤维排列方向与厚度方向一致,显著增强了复合材料厚度方向上的结合力,提高了mi-sic/sic的层间拉伸强度;
34.3、本发明的灯芯阵列可以促进液硅在预制体中高效渗透,有效解决了大尺寸和形状复杂构件渗硅的难题;
35.4、本发明通过调整灯芯的尺寸、间距来调节渗硅速度,可实现在10min之内完成各种尺寸构件的渗硅,降低液硅对纤维的损伤,保证复合材料的力学性能;
36.5、本发明工艺简单、成本低,具有工程化应用的价值。
附图说明
37.图1为本发明的预制体灯芯排布的俯视图;
38.图2为本发明的预制体插入灯芯阵列的侧视剖面图;
39.图3为本发明的带灯芯阵列预制体及渗硅工装的侧视剖面图;
40.其中:1、固化预制体;2、灯芯;3、石墨盖板;4、脱模剂层;5、石墨底板;6、石墨螺栓;7、硅粉;8、灯芯孔。
具体实施方式
41.为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例和附图,进一步阐述本发明,但下述实施例仅仅为本发明的优选实施例,并非全部。基于实施方式中的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得其它实施例,都属于本发明的保护范围。
42.下面结合附图描述本发明的具体实施例。
43.实施例1
44.一种提高mi-sic-sic预制体熔融渗硅均匀性的方法,所使用的工装包括石墨盖板3、脱模剂层4、石墨底板5和若干个石墨螺栓6,所述石墨盖板3中部均匀开设有若干个灯芯孔8,所述石墨盖板3与石墨底板5四周通过若干个石墨螺栓6固定连接,所述石墨盖板3的上下表面、石墨底板5的上表面以及灯芯孔8内均涂覆有氮化硼脱模剂层4;
45.使用上述工装进行提高mi-sic-sic预制体熔融渗硅均匀性的方法,包括如下步骤:
46.1)将连续sic纤维制成纤维单向预浸带,具体如下:
47.在制备单向预浸带时,首先采用化学气相沉积(cvd)技术在sic纤维束丝表面依次制备厚度为500nm的bn涂层、厚度为300nm的si3n4涂层和厚度为30nm的c涂层,而后使纤维束丝连续通过陶瓷浆料池,然后湿法缠绕在直径为600mm的滚筒上,缠绕宽度为400mm后从滚筒上剪下,获得宽度为400mm,长度为1884mm,厚度为0.4mm的sic纤维单向预浸带;
48.所述陶瓷浆料中包含粒度为2μm的碳化硅粉体、粒度为1μm的碳粉体、环氧树脂、分散剂及溶剂。
49.2)将单向预浸带剪裁成200mm
×
200mm的片材,层叠八层,其中相邻两层预浸带之间纤维的排列方向互相垂直,形成预制体;
50.3)将步骤2)所得的预制体利用真空袋进行密封,内部持续抽真空,置于热压罐中固化,固化压力为1.2mpa,固化温度为130℃,固化时间为2h,获得尺寸为200mm
×
200mm
×
3mm的固化预制体1,在此过程中,树脂固化,预制体内孔隙率降低,结构均匀性和强度大幅提高;
51.4)利用金刚石钻头在步骤3)所得的固化预制体1上中部每隔40mm开设若干个直径为1.5mm的孔,将步骤1)中所得的单向预浸带制成长度为5mm的若干个棒材作为灯芯2,用步
骤1)中的陶瓷浆料涂覆在灯芯2表面,然后将灯芯2分别插入固化预制体1上开设的孔中,灯芯2上端超出固化预制体1的上表面3mm,以便与熔融硅充分接触,灯芯2干燥后镶嵌在孔中,获得带灯芯阵列的预制体;
52.5)将步骤4)所得带灯芯阵列的预制体置于n2气氛中1200℃进行热处理1小时,使预制体中的有机物碳化得到碳化预制体,在此过程中,预制体中碳基树脂发生碳化,排除气体副产物,在基体中引入大量孔道,为后续的熔融渗硅提供了通路;
53.6)将步骤5)所得的碳化预制体置于石墨盖板3与石墨底板5之间,其中超出固化预制体1表面的灯芯2对应插入孔径为2mm的灯芯孔8中,用石墨螺栓6对石墨盖板3和石墨底板5进行固定,在石墨盖板3的上表面铺设一层硅粉7,并使硅粉7覆盖所有灯芯2;
54.7)将步骤6)安装所得的工装置于渗硅炉中,在10pa真空气氛中升温至1440℃保温10min,而后随炉冷却至室温,获得mi-sic/sic复合材料,在此过程中,熔融硅在毛细管力的作用下从各灯芯渗入预制体,然后由灯芯从不同位置同步向预制体各方向渗透,在短时间之内覆盖整个预制体,渗硅结束后,灯芯与复合材料融为一体,成为复合材料的一部分,灯芯露出复合材料表面的部分可通过机加工去除,进而获得表面片平整的mi-sic/sic复合材料。
55.所述步骤1)中单向预浸带的厚度还可以为在0.2mm-0.6mm之间的任意数值。
56.所述步骤3)中的热压罐固化压力还可以为0.5mpa-2mpa之间的任意数值;温度还可以为80-150℃之间的任意数值,保温时间还可以为0.5h-10h之间的任意数值。
57.所述步骤4)中固化预制体1上的开孔直径还可以为0.1mm-5mm之间的任意数值,孔间距还可以为10mm-100mm之间的任意数值,灯芯2超出固化预制体1表面的高度还可以为1mm~10mm之间的任意数值。
58.所述步骤5)中的惰性气氛还可以为氩气,热处理温度还可以为900℃-1300℃之间的任意数值,保温时间还可以为0.5h-5h之间的任意数值。
59.所述步骤7)中的熔融渗硅温度还可以为1410℃-1450℃之间的任意数值,渗硅时间还可以为1min-60min之间的任意数值。
60.所述碳化硅粉体的粒度还可以为0.5μm-5μm之间的任意数值,所述碳粉体的粒度还可以为0.1μm-5μm之间的任意数值,所述树脂粘合剂为酚醛树脂或者糠醛树脂中的任意一种。
61.实施例1结果测试表明,所得的mi-sic/sic复合材料的孔隙率为1.5%,sic纤维的体积分数为25%,复合材料的拉伸强度为359mpa,断裂应变为0.42%,层间拉伸强度45.3mpa,具有优异的力学性能。
62.实施例2
63.提高mi-sic-sic预制体熔融渗硅均匀性的工装同实施例1的工装;
64.提高mi-sic-sic预制体熔融渗硅均匀性的方法:
65.1)将连续sic纤维制成纤维预浸布,具体如下:
66.在制备预浸布时,先将sic纤维编织获得纤维布;制备纤维表面涂层;将带有纤维表面涂层的sic纤维布浸泡于陶瓷浆料中,充分浸渍后取出并干燥,获得预浸布,单片预浸布的厚度为0.5mm;
67.2)同实施例1的步骤2);
68.3)同实施例1的步骤3);
69.4)同实施例1的步骤4);
70.5)同实施例1的步骤5);
71.6)同实施例1的步骤6);
72.7)同实施例1的步骤7)。
73.所述步骤1)中预浸布的厚度还可以为0.3mm-0.8mm之间的任意数值。
74.实施例2结果分析表明,所得mi-sic/sic复合材料的孔隙率为2.3%,复合材料中sic纤维的体积分数为32%,复合材料拉伸强度为389mpa,断裂应变为0.47%,具有优异的力学性能。
75.对比例
76.mi-sic-sic预制体熔融渗硅均匀性的工装中石墨盖板3上无灯芯孔8,其他零部件与实施例1相同;
77.1)同实施例1的步骤1);
78.2)同实施例1的步骤2);
79.3)同实施例1的步骤3);
80.4)对比例中在固化预制体1不开孔,没有引入灯芯阵列;
81.5)同实施例1的步骤5);
82.6)将步骤5)所得的碳化预制体置于石墨盖板3与石墨底板5之间,将硅粉7铺设在石墨底板5上,并与预制体相接触,然后用石墨盖板3盖在预制体和硅粉7上,用石墨螺栓6对石墨盖板3与石墨底板5进行固定,以防止试样在渗硅过程中发生变形。石墨盖板3与预制体接触的内表面喷涂氮化硼脱模剂4,以防止硅粉7融化后与石墨盖板3反应,并防止预制体渗硅后石墨盖板3与复合材料粘结;
83.7)将步骤6)所得的工装置于渗硅炉中,在10pa真空气氛下升温至1440℃,保温30min,然后随炉冷却至室温,获得mi-sic/sic复合材料。
84.对比例3结果分析表明,当没有灯芯阵列时,尽管渗硅时间从10min延长到30min,液硅从预制体一侧渗透距离仅为65mm,其余部分基本没有渗硅。
85.在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
86.以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的仅为本发明的优选例,并不用来限制本发明,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
技术特征:
1.一种提高mi-sic-sic预制体熔融渗硅均匀性的方法,其所使用的工装包括石墨盖板(3)、脱模剂层(4)、石墨底板(5)和若干个石墨螺栓(6),所述石墨盖板(3)中部均匀开设有若干个灯芯孔(8),所述石墨盖板(3)与石墨底板(5)四周通过若干个石墨螺栓(6)固定连接,所述石墨盖板(3)的上下表面、石墨底板(5)的上表面以及灯芯孔(8)内均涂覆有脱模剂层(4);其特征在于,一种提高mi-sic-sic预制体熔融渗硅均匀性的方法,包括如下步骤:1)将连续sic纤维制成单向预浸带或者预浸布中的任意一种,具体如下:在制备单向预浸带时,首先在sic纤维束丝表面制备表面涂层,而后使纤维束丝连续通过陶瓷浆料池,然后湿法缠绕在滚筒上,形成单向预浸带;在制备预浸布时,首先将sic纤维编织获得纤维布,在纤维布表面制备表面涂层,将带有纤维表面涂层的sic纤维布浸泡于陶瓷浆料中,充分浸渍后取出并干燥,获得预浸布;2)将若干层单向预浸带或者预浸布层叠,其中相邻预浸带或者预浸布的纤维之间以任意角度排列形成预制体;3)将步骤2)所得的预制体利用真空袋进行密封,内部持续抽真空,置于热压罐中固化,获得固化预制体(1);4)在步骤3)所得的固化预制体(1)中部均匀开设若干个孔,将步骤1)中所得的单向预浸带制成若干个棒材作为灯芯(2),用步骤1)中的陶瓷浆料涂覆在灯芯(2)表面,然后将灯芯(2)分别插入固化预制体(1)上开设的孔中,所述灯芯(2)上端超出固化预制体(1)的上表面,待灯芯(2)干燥后镶嵌在孔中,获得带灯芯阵列的预制体;5)将步骤4)所得带灯芯阵列的预制体置于真空气氛中进行热处理,使预制体中的有机物碳化得到碳化预制体;6)将步骤5)所得的碳化预制体置于石墨盖板(3)与石墨底板(5)之间,其中超出固化预制体(1)表面的灯芯(2)分别插入对应的灯芯孔(8)中,用石墨螺栓(6)对石墨盖板(3)和石墨底板(5)进行固定,在石墨盖板(3)的上表面铺设一层硅粉(7),并使硅粉(7)覆盖所有灯芯(2);7)将步骤6)所得的工装置于渗硅炉中,在真空气氛中进行熔融渗硅,获得mi-sic/sic复合材料。2.根据权利要求1所述的一种提高mi-sic-sic预制体熔融渗硅均匀性的方法,其特征在于,所述脱模剂层(4)采用氮化硼,所述步骤1)中在sic纤维束丝或者纤维布表面制备的表面涂层包括bn涂层、si3n4涂层和c涂层,所述单片预浸带的厚度在0.2mm-0.6mm之间;所述单片预浸布的厚度在0.3mm-0.8mm之间,所述陶瓷浆料中包含碳化硅粉体、碳粉体、树脂粘合剂、分散剂及溶剂。3.根据权利要求2所述的一种提高mi-sic-sic预制体熔融渗硅均匀性的方法,其特征在于,所述碳化硅粉体的粒度为0.5μm-5μm,所述碳粉体的粒度为0.1μm-5μm,所述树脂粘合剂为环氧树脂、酚醛树脂或者糠醛树脂中的任意一种。4.根据权利要求1所述的一种提高mi-sic-sic预制体熔融渗硅均匀性的方法,其特征在于,所述步骤3)中的热压罐固化压力为0.5mpa-2mpa;温度为80℃-150℃,保温时间为0.5h-10h。5.根据权利要求1所述的一种提高mi-sic-sic预制体熔融渗硅均匀性的方法,其特征
在于,所述步骤4)中固化预制体(1)上的开孔直径为0.1mm-5mm,孔间距为10mm-100mm,灯芯(2)上端高出固化预制体(1)表面1mm~10mm。6.根据权利要求1所述的一种提高mi-sic-sic预制体熔融渗硅均匀性的方法,其特征在于,所述步骤5)中的惰性气氛为氮气或氩气中的任意一种,热处理温度为900℃-1300℃,保温时间为0.5h-5h。7.根据权利要求1所述的一种提高mi-sic-sic预制体熔融渗硅均匀性的方法,其特征在于,所述步骤7)中的熔融渗硅温度为1410℃-1450℃,渗硅时间为1min-60min。
技术总结
本发明公开了一种提高MI-SiC-SiC预制体熔融渗硅均匀性的方法,目的是解决针对大尺寸形状复杂的构件熔融硅无法均匀填充预制体的技术问题,技术方案为:它包括制备SiC纤维预浸带或者预浸布、层叠形成预制体、固化形成固化预制体、在固化后的预制体上打孔并插入灯芯阵列,热处理形成碳化预制体、熔融渗硅形成MI-SiC-SiC复合材料。本发明灯芯阵列使液硅迅速渗入预制体,显著提升渗硅速度和渗硅均匀性,有效解决大尺寸以及形状复杂构件熔融渗硅不完全的难题。完全的难题。完全的难题。
技术研发人员:马付根
受保护的技术使用者:合肥富维康新材料科技有限公司
技术研发日:2023.01.30
技术公布日:2023/7/21
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/