一种多目标柔性作业车间问题的遗传算法优化调度方法
未命名
08-12
阅读:79
评论:0

1.本发明涉及柔性车间调度领域,尤其是一种多目标柔性作业车间问题的遗传算法优化方法。
背景技术:
2.随着提出了“工业4.0”的概念,世界制造业的生产模式开始由效率低下、人工成本过高的传统制造业向智能制造业转变。而车间调度问题一直就是制造业中关键问题,良好的调度系统是制造车间高速生产的基础和前提,也是智能制造发展的重要体现。
3.柔性车间调度问题可认为是一种组合优化的决策过程,针对传统柔性作业车间调度问题的受考虑完工时间,设备利用率,完工成本等因素的局限,传统的优化方法已经很难在规定的时间内得到有效解。而目前已经提出了很多近似算法来求解柔性车间调度问题,包括启发式、元启发式和机器学习技术。相比较于精确算法,近似算法可以在求解效率和求解质量上实现较好的均衡,特别是群体智能(si)和进化算法(ea)。
4.遗传算法(genetic algorithms,简称ga)是一种借鉴生物界自然选择和自然遗传机制的高度并行、随机、自适应搜索算法。它是模仿自然界生物进化过程中“物竞天择,适者生存”的原理而进行的一种多参数、多群体同时优化的方法。经过多年的发展,遗传算法已经在数据挖掘、生产调度、机器学习、图象处理等领域得到成功的应用,并显示出良好的性能。同样,遗传算法在求解柔性车间调度问题时表现出了极强的实力,相比之下,启发式方法虽然计算复杂度低且实现简单,但设计有效的规则却需要一定的先验知识和大量的试错,很难保证局部最优。将遗传算法应用于车间调度问题,可以利用其全局搜索能力,在大规模的解空间中寻找最优解;同时,利用遗传算法具有的隐式并行处理能力以及鲁棒性强等特点,可以尽可能地减少问题的求解时间,提高求解效率。
技术实现要素:
5.针对现有技术存在的上述技术问题,本发明的目的在于提供一种多目标柔性作业车间问题的遗传算法优化调度方法。本发明以零件加工工序选择的机器以及零件的加工顺序为决策变量,以获得最少完工时间为目标函数,考虑实际零件生产加工中的顺序和机器本身的限制为约束条件,根据0-1规划的思想建立单目标规划模型,最终得到每种类型机器只有一台情况下的加工工序优化调度模型,通过遗传算法,选择对两个决策变量编码处理的不同,通过整数编码的方式求得近似最优解。
6.所述的一种多目标柔性作业车间问题的遗传算法优化调度方法,包括:
7.第一步,首先构建柔性车间调度问题的加工模型:
8.1)引入0-1决策变量x
ijh
9.在当前零件加工环境下,零件加工的优化调度即调度零件各工序的加工机器以及各零件在机器上的加工顺序;加工零件j第h工序可供选择的加工机器有i个,对应于零件j的第h工序是否选择在机器i上加工,引入0-1决策变量x
ijh
,运算公式如式(1)所示:
[0010][0011]
2)引入0-1决策变量y
ijhkl
[0012]
对同一台机器i而言,当前可选择的各零件的加工工序也有多种,零件j所需加工的第h工序是否先于零件k所需加工的l工序,为了实现总的所需加工时间最短的目标,合理的安排零件的加工顺序,引入0-1决策变量y
ijhkl
,运算公式如式(2)所示:
[0013][0014]
其中o
ijh
指的是零件j的第h道工序在i机器上加工,o
ikl
指的是零件k的第l道工序在i机器上加工;
[0015]
3)建立模型约束条件
[0016]
3.1)对每一个零件而言,零件的每道工序的完成时间大于或等于工序加工开始时间和该道工序加工所需时间之和,运算公式如下:
[0017]sjh
+x
ijh
×
p
ijh
≤c
jh (3)
[0018]
其中s
jh
是j零件的第h道工序开始加工的时间,p
ijh
是j零件的第h道工序在i机器上加工时所需的时间,c
jh
是j零件的第h道工序完工时的时间;
[0019]
3.2)对每一个零件而言,零件的每道工序的加工完成时间必然小于或等于后一道加工工序的开始时间,运算公式如下:
[0020]cjh
≤s
j(h+1) (4)
[0021]sj(h+1)
是j零件的第h+1道工序开始加工的时间;
[0022]
3.3)每一个零件完工时的时间必定不可能超过总的零件最大完工时间,运算公式如下:
[0023]cj
≤c
max (5)
[0024]
其中cj是j零件完工时的时间,c
max
指的是总的零件最大完工时间;
[0025]
3.4)对于机器而言,同一时刻每台机器只能加工一道工序,运算公式如下:
[0026]sjh
+p
ijh
≤s
kl
+l(1-y
ijhkl
) (6)
[0027]skl
是k零件的第l道工序开始加工的时间;
[0028]
通过引入一个很大的正整数l,通过0-1变量y
ijhkl
完成对i机器上任意两零件加工顺序先后不同时的时间约束,满足当前机器i正在加工的零件j的开始加工时间与加工该工序h之和不可能超过机器i下一个加工工序的开始时间,完成对机器i同一时刻只能加工一道工序的约束;
[0029]
3.5)同一时刻同一道工序仅能被一台可供选择的机器加工,运算公式如下:
[0030][0031]
其中m
jh
是第j个零件的第h道工序可选加工的机器数;
[0032]
3.6)零件加工工序优化的调度中,各个参数变量必须是正数:
[0033]sjh
≥0,c
jh
≥0 (8)
[0034]
综上过程,获得最小最大完工时间的模型为:
[0035][0036][0037]
第二步,通过遗传算法,在全局搜索最优解,首先根据零件加工车间的实际情况,采用msos染色体编码方式,对具体柔性车间调度问题进行抽象化,将求解问题的过程转换成类似自然界生物进化过程;基于染色体编码建立初始种群,染色体基因发生复制、交叉、变异的过程,最终产生一群更适合环境的个体,使群体进化到搜索空间中越来越好的区域,这样一代一代不断繁衍进化,最后收敛到一群最适应环境的个体,从而求得柔性车间调度问题的最优质解。
[0038]
进一步地,所述通过遗传算法求得柔性车间调度问题的最优质解的具体过程如下:
[0039]
1)染色体编码
[0040]
结合分段编码易表现、易操作的特点,改进使用msos整数编码方式,每条染色体由以下两部分组成:机器选择部分和工序排序部分,两部分的分段长度均为to;
[0041]
2)初始群体的生成
[0042]
通过设置最大进化代数t,群体大小m,交叉概率pc,变异概率pm,随机生成m个个体作为初始化群体p0;
[0043]
3)适应度值评估检测
[0044]
适应度函数表明个体或解的优劣性;对于柔性车间优化调度问题,该适应度函数定义为迭代过程中各个方案的总加工时间,,即适应度函数y的定义为:从而去刻画群体p(t)中各个个体的适应度;找到最小和最大适应度的染色体及它们在种群中的位置后,这代最大适应度的染色体去代替上一代进化中拥有最大适应度的最优染色体;
[0045]
并且,记录每一代进化中最好的适应度和平均适应度,在算法迭代的不同阶段,通过适当改变个体的适应度大小,进而避免群体间适应度相当而造成的竞争减弱,最终种群收敛于局部最优解;
[0046]
4)遗传算子
[0047]
4.1)选择算子
[0048]
选择操作从旧群体中以一定概率选择优良个体组成新的种群,以繁殖得到下一代
个体;个体被选中的概率跟适应度fi有关,个体适应度值越高,被选中的概率越大;采用轮盘赌法,当种群数为m,个体i的适应度为fi时,个体i被选取的概率为:
[0049]
当个体选择的概率给定后,产生[0,1]之间均匀随机数来决定哪个个体参加交配;若个体的选择概率大,则有机会被多次选中,那么它的遗传基因就会在种群中扩大;若个体的选择概率小,则被淘汰的可能性会大;
[0050]
4.2)交叉算子
[0051]
交叉操作是指从种群中随机选择两个个体,通过两个染色体的交换组合,把父串的优秀特征遗传给子串,从而产生新的优秀个体;
[0052]
使用率最高的是单点交叉算子,该算子在配对的染色体中随机的选择一个交叉位置,然后在该交叉位置对配对的染色体进行基因位变换;
[0053]
4.3)变异算子
[0054]
为了防止遗传算法在优化过程中陷入局部最优解,在搜索过程中,需要对个体进行变异,采用单点变异,也叫位变异,即只需要对基因序列中某一个位进行变异;
[0055]
群体p(t)经过选择、交叉、变异运算后得到下一代群体p(t+1),最终得到最优解,为柔性车间优化调度问题提供有效解决方案。
[0056]
与现有技术相比,本发明取得的有益效果是:
[0057]
1.本发明将柔性车间调度模型进行优化,根据零件加工车间的实际情况,通过设置各种参数,使其适用范围更加广泛,例如当出现工序转换时间限制、机器故障等情况时,模型都能做出合理实时的调整,以求出理想的最优质解。优化后的模型可以适应各种柔性车间调度场合,不局限于零件加工工序的策略优化,可以在很多柔性车间调度场合下实现最优解的求解。
[0058]
2.本发明提出了一种适合柔性车间调度问题的算法,该算法直接以目标函数值作为搜索信息,使用适应度函数值来度量个体的优良程度,不涉及目标函数值求导求微分的过程,从而提高了初始解的质量,加速了收敛过程,大大提高了优化后模型求得最优解的效率。这使得柔性车间调度可以更即时准确地实施,车间效益得以显著提高。
[0059]
3.适应度函数是本发明算法中非常关键的一个概念,它用于评价每个个体的优劣程度。在柔性车间优化调度问题中,适应度函数需要综合考虑多个指标,例如加工时间、机器利用率等。因此在本发明中将适应度函数定义为迭代过程中各个方案的总加工时间,从而去刻画群体p(t)中各个个体的适应度。找到最小和最大适应度的染色体及它们在种群中的位置后,这代最大适应度的染色体去代替上一代进化中拥有最大适应度的最优染色体,以使得个体能够更好地反映实际生产情况。
[0060]
4.编码方式也是本发明算法中非常重要的一个环节,它决定了个体的表达方式和操作方式。在柔性车间优化调度问题中,需要选择合适的编码方式,本发明结合分段编码易表现、易操作等特点,改进使用了msos这一整数编码方式,每条染色体由机器选择以及工序排序两部分组成,以便于实现优化调度。
[0061]
5.群体大小和进化次数是本发明算法中的两个关键参数,它们决定了算法的收敛速度和最终结果的精度。在柔性车间优化调度问题中,本发明可以根据实际生产情况和算
法的运行效率等因素,对群体大小和进化次数进行合理的设置
附图说明
[0062]
图1为本发明提供的一种多目标柔性作业车间问题的遗传算法优化调度方法的算法流程图;
[0063]
图2为本发明调度模型的求解算法框架示意图。
具体实施方式
[0064]
下面结合具体实施例对本发明作进一步说明,但本发明的保护范围并不限于此。
[0065]
实施例:
[0066]
1、零件加工工序优化的柔性车间调度问题描述
[0067]
1.1问题描述
[0068]
本发明应用于柔性车间调度问题中,对零件加工工序的策略进行优化。零件加工车间内有n种不同类型的零件pi(i=1,2,3,
…
,n),每台机器都可以完成所有零件的所有工序,但同一时间一台机器只能完成某一个零件的某一道工序,每一个零件都要在机器上完成所有加工工序后才能得到成品。每种零件所需要经历的工序以及不同工序在不同机器上的加工时间均已知。假设每种零件的加工顺序固定,但是可以任选机器进行各道工序的加工,顾客需要n个零件pi(i=1,2,3,
…
,n)。开始加工时刻为0,该时刻所有机器处于空闲状态,生产每种零件的机器台数固定。
[0069]
2、数学模型
[0070]
2.10-1决策变量x
ijh
[0071]
在当前零件加工环境下,零件加工的优化调度即调度零件各工序的加工机器以及各零件在机器上的加工顺序。加工零件j第h工序可供选择的加工机器有i个,对应于零件j的第h工序是否选择在机器i上加工,引入0-1决策变量x
ijh
,则有
[0072][0073]
其中o
jh
指的是零件j的第h道工序。
[0074]
2.20-1决策变量y
ijhkl
[0075]
对同一台机器i而言,当前可选择的各零件的加工工序也有多种。零件j所需加工的第h工序是否先于零件k的l工序加工,引入0-1决策变量y
ijhkl
,旨在选择一种方案能够合理的安排零件的加工顺序,从而实现总的所需加工时间最短的目标,则有:
[0076][0077]
其中o
ijh
指的是零件j的第h道工序在i机器上加工,o
ikl
指的是零件k的第l道工序在i机器上加工。
[0078]
2.3模型约束条件
[0079]
2.3.1对每一个零件而言,零件的每道工序的完成时间大于或等于工序加工开始时间和该道工序加工所需时间之和,即:
[0080]sjh
+x
ijh
×
p
ijh
≤c
jh
ꢀꢀꢀ
(3)
[0081]
其中s
jh
是j零件的第h道工序开始加工的时间,p
ijh
是j零件的第h道工序在i机器上加工时所需的时间,c
jh
是j零件的第h道工序完工时的时间。
[0082]
2.3.2对每一个零件而言,零件的每道工序的加工完成时间必然小于或等于后一道加工工序的开始时间,即
[0083]cjh
≤s
j(h+1)
ꢀꢀꢀ
(4)
[0084]
2.3.3每一个零件完工时的时间必定不可能超过总的零件最大完工时间,即
[0085]cj
≤c
max
ꢀꢀꢀ
(5)
[0086]
其中cj是j零件完工时的时间,c
max
指的是最大完工时间。
[0087]
2.3.4对于机器而言,同一时刻每台机器只能加工一道工序,即
[0088]sjh
+p
ijh
≤s
kl
+l(1-y
ijhkl
)
ꢀꢀꢀ
(6)
[0089]skl
是k零件的第l道工序开始加工的时间;
[0090]
通过引入一个很大的正整数l,例如l=109,通过0-1变量y
ijhkl
完成对i机器上任意两零件加工顺序先后不同时的时间约束,满足当前机器i正在加工的零件j的开始加工时间与加工该工序h之和不可能超过机器i下一个加工工序的开始时间,完成对机器i同一时刻只能加工一道工序的约束。
[0091]
2.3.5同一时刻同一道工序仅能被一台可供选择的机器加工。
[0092][0093]
其中m
jh
是第j个零件的第h道工序可选加工的机器数。
[0094]
2.3.6零件加工工序优化的调度中,各个参数变量必须是正数。
[0095]sjh
≥0,c
jh
≥0 (8)
[0096]
综上,获得最小最大完工时间的模型为:
[0097][0098][0099]
本发明调度模型的求解算法框架示意图参见图2。对照图2,用在某台机器上某个零件某工序的开始时间、某台机器下次可用的时间、在某台机器上某个零件某工序所需加工时间、在某台机器上某个零件某工序的完成时间,新建四个关于时间的变量,用于后续选
择工序的循环逻辑判断,对是否为首道加工工序进行讨论并循环求解。在对工序和零件进行选择的时候,需要将建立的模型转换成matlab程序中的循环,通过不断地循环进行逻辑判断,从而在遗传算法不断迭代的过程中得出最优解。
[0100]
3、改进遗传算法解决零件加工工序优化的柔性车间调度问题
[0101]
本发明在解决柔性车间调度问题时,结合遗传算法(genetic algorithm,ga)在全局搜索最优解,首先根据零件加工车间的实际情况,采用msos染色体编码方式,对具体柔性车间调度问题进行抽象化,将求解问题的过程转换成类似自然界生物进化过程。基于染色体编码建立初始种群(population),染色体基因发生复制、交叉、变异等过程,最终产生一群更适合环境的个体,使群体进化到搜索空间中越来越好的区域,这样一代一代不断繁衍进化,最后收敛到一群最适应环境的个体(individual),从而求得柔性车间调度问题的最优质解。本发明通过遗传算法在全局搜索求得柔性车间调度问题的最优质解的工艺流程图见图1。
[0102]
3.1染色体编码
[0103]
在遗传算法中,染色体编码是重要的一环,染色体编码要求能够适应不同类型的问题。集成编码便于表达,但是由于染色体中每一个基因位它所包含的信息过多,在约束条件较多的情况下进行遗传操作往往会变得较为复杂,因此适应此编码方法的交叉和变异方法显得较少,难以改进提高。而分段编码则因为采用二进制编码,会降低求解效率。本发明结合分段编码易表现、易操作等特点,改进使用了msos这一整数编码方式,每条染色体由以下两部分组成:机器选择部分(machines selection,ms)和工序排序部分(operations sequencing,os),两部分的分段长度均为to。
[0104]
3.2初始群体的生成
[0105]
本发明可以通过设置最大进化代数t,群体大小m,交叉概率pc,变异概率pm,随机生成m个个体作为初始化群体p0。
[0106]
3.3适应度值评估检测
[0107]
适应度函数表明个体或解的优劣性。对于柔性车间优化调度问题,本发明的适应度函数定义为迭代过程中各个方案的总加工时间,即适应度函数y的定义为:从而去刻画群体p(t)中各个个体的适应度。找到最小和最大适应度的染色体及它们在种群中的位置后,这代最大适应度的染色体去代替上一代进化中拥有最大适应度的最优染色体。
[0108]
并且,记录每一代进化中最好的适应度和平均适应度,在算法迭代的不同阶段,通过适当改变个体的适应度大小,进而避免群体间适应度相当而造成的竞争减弱,最终种群收敛于局部最优解。
[0109]
3.4遗传算子
[0110]
3.4.1选择算子
[0111]
选择操作从旧群体中以一定概率选择优良个体组成新的种群,以繁殖得到下一代个体。个体被选中的概率跟适应度值有关,个体适应度值越高,被选中的概率越大。本发明
采用轮盘赌法,当种群数为m,个体i的适应度为fi时,个体i被选取的概率为:
[0112]
当个体选择的概率给定后,产生[0,1]之间均匀随机数来决定哪个个体参加交配。若个体的选择概率大,则有机会被多次选中,那么它的遗传基因就会在种群中扩大;若个体的选择概率小,则被淘汰的可能性会大。
[0113]
3.4.2交叉算子
[0114]
交叉操作是指从种群中随机选择两个个体,通过两个染色体的交换组合,把父串的优秀特征遗传给子串,从而产生新的优秀个体。
[0115]
本发明中使用率最高的是单点交叉算子,该算子在配对的染色体中随机的选择一个交叉位置,然后在该交叉位置对配对的染色体进行基因位变换。
[0116]
3.4.3变异算子
[0117]
为了防止遗传算法在优化过程中陷入局部最优解,在搜索过程中,需要对个体进行变异,在本发明中采用单点变异,也叫位变异,即只需要对基因序列中某一个位进行变异,以二进制编码为例,即0变为1,而1变为0。
[0118]
群体p(t)经过选择、交叉、变异运算后得到下一代群体p(t+1),最终得到最优解,为柔性车间优化调度问题提供有效解决方案。
[0119]
本说明书所述的内容仅仅是对发明构思实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式。
技术特征:
1.一种多目标柔性作业车间问题的遗传算法优化调度方法,其特征在于包括:第一步,首先构建柔性车间调度问题的加工模型:1)引入0-1决策变量x
ijh
在当前零件加工环境下,零件加工的优化调度即调度零件各工序的加工机器以及各零件在机器上的加工顺序;加工零件j第h工序可供选择的加工机器有i个,对应于零件j的第h工序是否选择在机器i上加工,引入0-1决策变量x
ijh
,运算公式如式(1)所示:其中o
jh
指的是零件j的第h道工序;2)引入0-1决策变量y
ijhkl
对同一台机器i而言,当前可选择的各零件的加工工序也有多种,零件j所需加工的第h工序是否先于零件k所需加工的l工序,为了实现总的所需加工时间最短的目标,合理的安排零件的加工顺序,引入0-1决策变量y
ijhkl
,运算公式如式(2)所示:其中o
ijh
指的是零件j的第h道工序在i机器上加工,o
ikl
指的是零件k的第l道工序在i机器上加工;3)建立模型约束条件3.1)对每一个零件而言,零件的每道工序的完成时间大于或等于工序加工开始时间和该道工序加工所需时间之和,运算公式如下:s
jh
+x
ijh
×
p
ijh
≤c
jh
(3)其中s
jh
是j零件的第h道工序开始加工的时间,p
ijh
是j零件的第h道工序在i机器上加工时所需的时间,c
jh
是j零件的第h道工序完工时的时间;3.2)对每一个零件而言,零件的每道工序的加工完成时间必然小于或等于后一道加工工序的开始时间,运算公式如下:c
jh
≤s
j(h+1)
(4)s
j(h+1)
是j零件的第h+1道工序开始加工的时间;3.3)每一个零件完工时的时间必定不可能超过总的零件最大完工时间,运算公式如下:c
j
≤c
max
(5)其中c
j
是j零件完工时的时间,c
max
指的是总的零件最大完工时间;3.4)对于机器而言,同一时刻每台机器只能加工一道工序,运算公式如下:s
jh
+p
ijh
≤s
kl
+l(1-y
ijhkl
)(6)s
kl
是k零件的第l道工序开始加工的时间;通过引入一个很大的正整数l,通过0-1变量y
ijhkl
完成对i机器上任意两零件加工顺序先后不同时的时间约束,满足当前机器i正在加工的零件j的开始加工时间与加工该工序h之和不可能超过机器i下一个加工工序的开始时间,完成对机器i同一时刻只能加工一道工
序的约束;3.5)同一时刻同一道工序仅能被一台可供选择的机器加工,运算公式如下:其中m
jh
是第j个零件的第h道工序可选加工的机器数;3.6)零件加工工序优化的调度中,各个参数变量必须是正数:s
jh
≥0,c
jh
≥0(8)综上过程,获得最小最大完工时间的模型为:第二步,通过遗传算法,在全局搜索最优解,首先根据零件加工车间的实际情况,采用msos染色体编码方式,对具体柔性车间调度问题进行抽象化,将求解问题的过程转换成类似自然界生物进化过程;基于染色体编码建立初始种群,染色体基因发生复制、交叉、变异的过程,最终产生一群更适合环境的个体,使群体进化到搜索空间中越来越好的区域,这样一代一代不断繁衍进化,最后收敛到一群最适应环境的个体,从而求得柔性车间调度问题的最优质解。2.如权利要求1所述的一种多目标柔性作业车间问题的遗传算法优化调度方法,其特征在于所述通过遗传算法求得柔性车间调度问题的最优质解的具体过程如下:1)染色体编码结合分段编码易表现、易操作的特点,改进使用msos整数编码方式,每条染色体由以下两部分组成:机器选择部分和工序排序部分,两部分的分段长度均为to;2)初始群体的生成通过设置最大进化代数t,群体大小m,交叉概率pc,变异概率pm,随机生成m个个体作为初始化群体p0;3)适应度值评估检测适应度函数表明个体或解的优劣性;对于柔性车间优化调度问题,该适应度函数定义为迭代过程中各个方案的总加工时间,即适应度函数y的定义为:从而去刻画
群体p(t)中各个个体的适应度;找到最小和最大适应度的染色体及它们在种群中的位置后,这代最大适应度的染色体去代替上一代进化中拥有最大适应度的最优染色体;并且,记录每一代进化中最好的适应度和平均适应度,在算法迭代的不同阶段,通过适当改变个体的适应度大小,进而避免群体间适应度相当而造成的竞争减弱,最终种群收敛于局部最优解;4)遗传算子4.1)选择算子选择操作从旧群体中以一定概率选择优良个体组成新的种群,以繁殖得到下一代个体;个体被选中的概率跟适应度fi有关,个体适应度值越高,被选中的概率越大;采用轮盘赌法,当种群数为m,个体i的适应度为fi时,个体i被选取的概率为:当个体选择的概率给定后,产生[0,1]之间均匀随机数来决定哪个个体参加交配;若个体的选择概率大,则有机会被多次选中,那么它的遗传基因就会在种群中扩大;若个体的选择概率小,则被淘汰的可能性会大;4.2)交叉算子交叉操作是指从种群中随机选择两个个体,通过两个染色体的交换组合,把父串的优秀特征遗传给子串,从而产生新的优秀个体;使用率最高的是单点交叉算子,该算子在配对的染色体中随机的选择一个交叉位置,然后在该交叉位置对配对的染色体进行基因位变换;4.3)变异算子为了防止遗传算法在优化过程中陷入局部最优解,在搜索过程中,需要对个体进行变异,采用单点变异,也叫位变异,即只需要对基因序列中某一个位进行变异;群体p(t)经过选择、交叉、变异运算后得到下一代群体p(t+1),最终得到最优解,为柔性车间优化调度问题提供有效解决方案。
技术总结
本发明公开了一种多目标柔性作业车间问题的遗传算法优化调度方法,它以零件加工工序选择的机器以及零件的加工顺序为决策变量,以获得最少完工时间为目标函数,考虑实际零件生产加工中的顺序和机器本身的限制为约束条件,根据0-1规划的思想建立单目标规划模型,最终得到每种类型机器只有一台情况下的加工工序优化调度模型,通过遗传算法,选择对两个决策变量编码处理的不同,通过整数编码的方式求得近似最优解。本发明将柔性车间调度模型进行优化,优化后的模型可以适应各种柔性车间调度场合,不局限于零件加工工序的策略优化,可以在很多柔性车间调度场合下实现最优解的求解。这使得柔性车间调度可以更即时准确地实施,车间效益得以显著提高。效益得以显著提高。效益得以显著提高。
技术研发人员:包欣蓉 钱珺吴 周鑫龙 陈思宇 刘健
受保护的技术使用者:浙江工业大学
技术研发日:2023.04.26
技术公布日:2023/8/9
版权声明
本文仅代表作者观点,不代表航家之家立场。
本文系作者授权航家号发表,未经原创作者书面授权,任何单位或个人不得引用、复制、转载、摘编、链接或以其他任何方式复制发表。任何单位或个人在获得书面授权使用航空之家内容时,须注明作者及来源 “航空之家”。如非法使用航空之家的部分或全部内容的,航空之家将依法追究其法律责任。(航空之家官方QQ:2926969996)
航空之家 https://www.aerohome.com.cn/
飞机超市 https://mall.aerohome.com.cn/
航空资讯 https://news.aerohome.com.cn/
上一篇:昆明假单胞菌及其应用 下一篇:一种可可碱羧酸共晶及其制备方法和应用与流程